
WEAKLY SUPERVISED DEFECT LOCALIZATION WITH RESIDUAL FEATURES

1. DETAILS OF EXPERIMENTAL SETUP

1.1. Dataset

We evaluated the proposed method on the Road Damage

Dataset 2020 (RDD2020) [1], the RDD2022 [2] and the

Visual Anomaly (VisA) dataset [3].

RDD2020. RDD2020 is a large-scale dataset with 26,620

images of roads in India, Japan, and the Czech Republic,

captured using smartphones mounted on vehicles. The im-

ages are horizontal and show four types of road damage:

longitudinal cracks (D00), transverse cracks (D10), alliga-

tor cracks (D20), and potholes (D40). Each damage type is

annotated with bounding boxes. Since the test set annota-

tions for RDD2020 were not released owing to their use in

the Crowdsensing-based Road Damage Detection Challenge

(CRDDC) 2020 [4], we split the original training set into 70%

for training and 30% for testing. Table 1 details the training

and test sets used in our experiments.

RDD2022. RDD2022 extends RDD2020 by adding new

data from Norway, the United States, and China. The im-

ages are both top-down and horizontal views, showing the

same four types of road damage as RDD2020. Similar to

RDD2020, we split the original training set into 70% for train-

ing and 30% for testing, because the test set annotations were

not released. Table 2 shows the number of images with each

label in the training and test sets.

VisA. The VisA dataset is designed for anomaly detection

and segmentation tasks and used as an image anomaly detec-

tion benchmark. The dataset is divided into 12 subsets, each

corresponding to different objects. We used the 2-class high-

shot setup on VisA, which is provided in [3]. In the 2-class

high-shot setup, for each object, 60% and 40% of normal and

anomalous images are assigned to training and test sets, re-

spectively.

1.2. Implementation Details

1.2.1. Proposed method

We introduce the residual feature learning (RFL) and the ref-

erence image selection (RIS) module to the ResNet50-feature

pyramid network (FPN) [5]. In order to produce score maps,

we convert P3, P4, and P5 feature maps obtained from the

FPN by convolution operations with a 3 × 3 kernel, 1 × 1

kernel, and sigmoid function. We up-sample the score maps

to the same input size by bilinear interpolation, because the

height and width of the P3 feature map are 1/8 of the input

image size. We use a ResNet50 [6] model pretrained on Im-

ageNet [7], which is publicly available. The input image size

is also the same, resized to a fixed size of 512× 512.

For training the proposed method in RDD2020/2022, we

train for 10,000 iterations with a batch size of 96. We use

stochastic gradient descent [8] for the parameter optimization.

Our hyperparameter settings are as follows: initial learning

rate, 0.002 for the backbone and 0.02 for the FPN; weight de-

cay, 0.0005; momentum; 0.9. The cosine annealing strategy

[9] is adopted to adjust the learning rate. We use the warm-

up technique [10], with a warm-up step of 100 and warm-up

multiplier of 0.1. We also use data augmentation techniques

including HSV color transformation, image scaling, flipping,

rotation, and shifting. Data augmentation is implemented by

using the Albumentations library [11]. We use the PyTorch

framework [12] for all our experiments. For training the pro-

posed method in VisA, we train for 1,000 iterations and use

the Adam optimizer with learning rate 0.00005. Other set-

tings are the same as for RDD2020/2022.

We used two NVIDIA RTX A6000 GPUs to train our

model. It takes about 7 h to train our model on RDD2020.

The average inference time per image was 59 ms. This dura-

tion for our method encompasses the time needed for feature

extraction and similarity calculation for the selection of refer-

ence images.

1.2.2. Baseline Methods

We compare our method with several baselines, including

WeCLIP [13], SeCo [14], and multiple instance learning

(MIL) [15]. Below are the details of these baselines:

WeCLIP[13]: WeCLIP is weakly supervised semantic

segmentation (WSSS) method based on the frozen CLIP

backbone. WeCLIP has a frozen CLIP CAM refinement

module and improves the quality of pseudo labels. We

use their official implementation and modify the prompts

for the defect detection and localization task. In the origi-

nal WeCLIP, the prompt input to the CLIP text encoder is

based on CLIP-ES[16]. Specifically, the prompt ’a clean

origami {}.’ is selected. In RDD2020/2022, specif-

ically, we select ’a clean origami {}.’ for the

background category. Here, {} corresponds to ’ground’,

’land’, ’grass’, ’tree’, ’building’, ’wall’, ’sky’, ’lake’, ’wa-



Table 1. Details of the RDD2020 dataset split into training and test sets. The table shows the number of images with each label.

Num of images D00 D10 D20 D40 Normal

Training 14,728 3,236 1,817 4,583 2,128 6,240

Test 6,313 1,434 783 2,018 946 2,606

Table 2. Details of the RDD2022 dataset split into training and test sets. The table shows the number of images with each label

for the training and test sets.

Num of images D00 D10 D20 D40 Normal

Training 26,866 9,453 5,410 5,913 2,582 10,235

Test 11,519 4,095 2,299 2,499 1,092 4,383

ter’, ’river’, ’sea’, ’railway’, ’railroad’, ’keyboard’, ’hel-

met’, ’cloud’, ’house’, ’mountain’, ’ocean’, ’road’, ’rock’,

’street’, ’valley’, ’bridge’, ’sign’. Additionally, we select

’{} on road.’ for the foreground category. Here, {}
represents the names of each damage category (longitu-

dinal cracks, transverse cracks, alligator cracks, and pot-

holes). In the VisA experiments, we use the prompts from

WinCLIP[17]. For the foreground category, we select the

following prompts: ’damaged {}.’, ’broken {}.’,

’{} with flaw.’, ’{} with defect.’, ’{} with

damage.’ For the background category, we select the fol-

lowing prompts: ’{}.’, ’flawless {}.’, ’perfect

{}.’, ’unblemished {}.’, ’{} without flaw.’,

’{} without defect.’, ’{} without damage.’

Here, {} represents each object category. The remaining

settings follow the training setup used in the PASCAL VOC

2012 experiment as described in the original paper [13] for

RDD2020/2022 and VisA experiments. We utilize the frozen

CLIP backbone with the ViT-16-base architecture. The batch

size is set to 4, and the maximum number of iterations is set

to 30,000. We employ the AdamW optimizer [18] with a

learning rate of 2e
−3 and a weight decay of 1e

−3. During

inference, we use multi-scale testing with scales {0.75, 1.0}.

DenseCRF [19] is applied as a post-processing method to

refine the predictions.

SeCo[14]: SeCo is one of the SOTA methods in WSSS

that tackles the co-occurrence problem by designing image

decomposition and contrastive representation. We use the of-

ficial implementation of SeCo. The training setup follows

the PASCAL VOC 2012 experiment settings as described in

the original paper [14] for RDD2020/2022 and VisA exper-

iments. Encoders in the dual-teacher single-student frame-

work use ViT-B as the backbone, initialized with pre-trained

weights on ImageNet. For inference, we also follow the PAS-

CAL VOC 2012 experiment setup, using multi-scale testing

with scales {1.0, 1.25, 1.5} and DenseCRF [19] to refine the

predictions.

MIL[15]: We implemented MIL by removing the RFL

and RIS modules from our proposed method. Similar to our

proposed method, MIL is based on ResNet50-FPN and gen-

erates score maps using the P3, P4, and P5 feature maps ob-

tained from the FPN. The score maps are produced through

convolution operations with a 3× 3 kernel, 1× 1 kernel, and

sigmoid function. Global Max Pooling is applied to the score

maps to obtain image-level scores. Binary cross-entropy loss

is calculated from the obtained image-level scores and image-

level labels. The training and inference settings are the same

as those of the proposed method.

2. DETAILS OF EVALUATION METRICS

In this section, we detail the evaluation metrics used in our

RDD2020/2022 experiments. We use mean average preci-

sion (mAP) with bounding boxes as a localization metric, as

RDD2020/2022 are annotated with bounding boxes. Below,

we explain how to define precision and recall using bounding

boxes and predicted score maps. Our method and the baseline

methods output score maps S, which have elements of score

at each position. However, the ground truth label for the dam-

age is given as a bounding box in RDD2020/RDD2022. To

quantitatively evaluate localization for damage regions, we

assign a detection score to the bounding box. In this study,

the maximum score within the correct bounding box is set to

the detection score for each damage, and the maximum score

outside the correct bounding box is calculated as the detec-

tion score for false detection evaluation. We thus calculated

the average precision (AP) using these scores.

3. FULL QUANTITATIVE RESULTS

This section provides a detailed quantitative evaluation, ex-

panding on the average metrics presented in the main paper

due to space constraints. Table 3 and Table 4 compare the pro-

posed method and baseline methods in terms of I-AUROC,

P-AUROC, P-AUPR, and PRO for all objects in the VisA

dataset. Table 5 and Table 6 show the I-AUROC and AP for

each class in the RDD2020 and RDD2022 datasets, respec-

tively.

VisA. As shown in Table 3, the proposed method demon-

strates competitive performance with baseline methods in

terms of I-AUROC. For the localization evaluation metric



pixel level AUROC (P-AUROC), WeCLIP achieves the high-

est performance. However, VisA is highly imbalanced at the

pixel level, and it is more appropriate to use P-AUPR for

evaluation [3]. As shown in Table 4, the proposed method

outperforms baseline methods in P-AUPR for 5 out of 12

objects. Furthermore, in terms of PRO, the proposed method

achieves the highest performance for 6 out of 12 objects.

RDD2020. As shown in Table 5, the proposed method

achieved the highest AP across all classes. Additionally, the

proposed method demonstrated the highest or second-highest

performance in terms of I-AUROC for all classes.

RDD2022. As shown in Table 6, the proposed method

outperforms baseline methods in terms of both AP and I-

AUROC for all classes.



Table 3. Comparison with baseline methods on I-AUROC and P-AUROC metrics for different objects in the VisA dataset.

Bold numbers represent the highest values for each metric.
Metric I-AUROC P-AUROC

Method WeCLIP SeCo MIL Ours WeCLIP SeCo MIL Ours

Object

candle 96.2 97.7 97.7 99.4 96.5 96.2 90.6 89.8

capsules 93.7 97.3 99.2 98.1 99.2 98.7 98.0 97.9

cashew 98.3 99.9 99.6 99.8 94.9 85.6 55.1 65.7

chewinggum 99.3 99.9 99.9 99.8 99.4 98.8 96.7 97.3

fryum 97.8 98.8 100.0 99.8 98.5 95.2 64.3 68.9

macaroni1 91.3 99.1 99.8 99.8 99.2 95.4 87.7 87.3

macaroni2 78.1 98.8 95.1 95.3 97.4 93.9 80.9 85.0

pcb1 98.5 97.3 99.7 99.8 99.0 91.6 64.2 80.8

pcb2 84.3 95.3 99.7 99.3 96.5 95.6 63.7 87.7

pcb3 74.5 97.1 99.7 98.7 90.7 90.0 49.9 88.7

pcb4 98.8 100.0 99.6 100.0 99.1 98.0 78.5 86.0

pipe fryum 99.9 99.7 99.9 100.0 99.1 99.1 72.9 73.5

Average 92.6 98.4 99.2 99.1 97.5 94.8 75.2 84.1

Table 4. Comparison with baseline methods on P-AUPR and PRO metrics for different objects in the VisA dataset. Bold

numbers represent the highest values for each metric.
Metric P-AUPR PRO

Method WeCLIP SeCo MIL Ours WeCLIP SeCo MIL Ours

Object

candle 5.9 2.1 7.9 11.7 69.0 53.1 64.7 69.3

capsules 28.4 12.5 51.0 50.1 50.7 55.1 66.9 58.3

cashew 6.2 5.9 1.9 8.2 59.1 46.4 13.2 46.0

chewinggum 56.2 12.1 36.9 52.5 42.3 38.2 56.0 53.7

fryum 19.3 19.2 7.8 12.4 43.0 57.2 54.8 62.5

macaroni1 7.3 2.7 3.4 6.9 68.2 29.0 66.2 65.4

macaroni2 6.2 37.4 4.0 6.4 33.8 63.5 59.5 65.5

pcb1 15.9 14.3 2.9 9.2 61.8 38.3 19.4 17.8

pcb2 7.1 8.2 1.3 27.7 16.9 37.1 13.1 39.9

pcb3 8.8 2.9 0.0 21.6 16.1 24.6 0.0 45.0

pcb4 22.5 17.4 13.9 35.2 52.5 53.6 40.0 50.2

pipe fryum 15.7 32.2 15.3 16.2 54.7 52.1 57.1 61.9

Average 16.6 13.9 12.2 21.5 47.3 45.7 42.6 53.0

Table 5. Comparison of methods on different classes on RDD2020. Bold numbers represent the highest values for each metric.

Class D00 D10 D20 D40 Average

Metric I-AUROC AP I-AUROC AP I-AUROC AP I-AUROC AP I-AUROC AP

Method

WeCLIP 75.6 26.1 88.2 39.6 91.6 45.5 90.5 48.4 86.5 39.9

SeCo 83.4 40.0 90.6 40.5 93.8 52.4 91.2 54.1 89.7 46.8

MIL 85.3 48.3 90.2 40.9 95.4 77.6 93.9 57.5 91.2 56.1

Ours 85.1 51.5 91.4 44.4 95.2 80.5 94.4 61.6 91.5 59.5

Table 6. Comparison of methods on different classes on RDD2022. Bold numbers represent the highest values for each metric.

Class D00 D10 D20 D40 Average

Metric I-AUROC AP I-AUROC AP I-AUROC AP I-AUROC AP I-AUROC AP

Method

WeCLIP 76.3 44.9 89.0 42.3 90.2 46.9 89.5 39.7 86.3 43.4

SeCo 88.9 54.3 89.2 34.2 94.7 50.7 91.1 48.2 91.0 46.9

MIL 91.7 66.0 94.2 57.2 96.1 74.7 92.8 53.8 93.7 62.9

Ours 92.2 67.3 94.7 60.9 96.2 78.4 94.8 57.9 94.5 66.1
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Zachary DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie

Bai, and Soumith Chintala, “Pytorch: An imperative

style, high-performance deep learning library,” in Ad-

vances in Neural Information Processing Systems 32:

Annual Conference on Neural Information Processing

Systems 2019, NeurIPS 2019, December 8-14, 2019,

Vancouver, BC, Canada, Hanna M. Wallach, Hugo

Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
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