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Al. DATASET PROCESSING DETAILS

As robust and biologically meaningful promoter-enhancer
pairings are crucial for model interpretation and downstream
analysis, we utilized the single-cell multiome dataset of the
prefrontal cortex region from the PsychENCODE consortium
[19]. Following the established data processing protocol, we
began by removing batch effects from the curated single-cell
ATAC-seq (scATAC-seq) dataset. We then call peaks using
MACS2? [25] for seven major cell types: Excitatory neurons
(Ex), Inhibitory neurons (In), astrocytes (Ast), Endothelial
cells (End), Microglia (Mic), Oligodendrocytes (Oli), and
Oligodendrocyte precursor cells (OPC), specifying a peak
width of L = 500 base pairs. The resulting cis-regulatory el-
ements (CREs) was identified as suggested and subsequently
divided into promoter and distal categories based on their
distance to genes.

Given the importance of robust and biologically mean-
ingful promoter-enhancer pairings for model interpretability
and downstream analyses, we utilized the single-cell multi-
ome dataset of the prefrontal cortex region provided by the
PsychENCODE consortium [19]. Adhering to the established
data processing protocol, we began by correcting batch ef-
fects within the curated single-cell ATAC-seq (scATAC-seq)
dataset. Subsequently, we identified peaks using MACS2 [25]
for seven major cell types: Excitatory neurons (Ex), In-
hibitory neurons (In), Astrocytes (Ast), Endothelial cells
(End), Microglia (Mic), Oligodendrocytes (Oli), and Oligo-
dendrocyte precursor cells (OPC), specifying a peak width of
L = 500 base pairs. The resulting cis-regulatory elements
(CREs) were identified following recommended guidelines
and were further categorized into promoter and distal ele-
ments based on their proximity to genes.

For the distal CREs, we integrated the log-normalized
single-cell RNA-seq (scRNA-seq) data from the same cohort.
We applied the addPeak2GeneLinks function of ArchR [20]
to identify distal peak-gene pairs associated with specific
genes, using a maximum search distance of £500, 000 base
pairs and a Pearson correlation cutoff of 0.45. In this study,
we considered these distal peaks as enhancers and extracted
their genomic sequences from the hg38 reference genome
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based on their coordinates. For each associated gene, we
extracted the first L = 1024 base pairs of the promoter region
using the genomic annotation of hg38.

In summary, we curated a promoter-enhancer generation
dataset with N = 7 cell types. In total, the proposed multi-
modal promoter-enhancer generation dataset compromises
1,536,274 pairs of promoter-enhancer. For each cell type,
there are 109,734 promoter-enhancer pairs on average. Each
promoter sequence is in L = 1024 base pairs and its corre-
sponding enhancer sequence with L = 500 base pairs. To
ensure a fair evaluation, we split the dataset by separating
the corpus based on cell type and corresponding promoter
sequences. The detailed dataset statistics are summarized in
Table 1.

A2. EVALUATION DETAILS

A2.1. JS Divergence

For two discrete probability distributions P and @, the JS di-
vergence is defined as:

Ds(P || @) = 5 Dt P || M) + 5 Dcef@ || M), (AT

where M = 1 (P+Q), and Dk, (- || -) denotes the Kullback-
Leibler (KL) divergence. In our problem setting, the discrete
probability distribution P is constructed by first computing
TF motif distributions for each sequence in a given compara-
ble group (e.g., either the generated or the training set), then
averaging and normalizing these motif-hit counts to form a
probability distribution. Analogously, () is built in the same
manner but from the endogenous ground-truth sequences. By
comparing P and () via the JS divergence, we obtain a mea-
sure of how closely the TF motif usage patterns in generated
(or training) sequences mirror those in the real, biologically
observed sequences.

A2.2. FID Classifier Training

Dataset The dataset used for FID classifier training is iden-
tical to that of LEONINE. Specifically, we took the training
partition from the LEONINE dataset to train the classifier, then
evaluated its performance on the same evaluation set used in
LEONINE. Finally, we further tested the classifier on the test-
ing set to ensure robust generalization.

Model Each input is an enhancer sequence of 500 to-
kens. We first embed the raw nucleotide tokens into a 128-
dimensional latent space. The embedded sequences then pass
through multiple layers of CNNs and max-pooling to capture
local features, which are concatenated into a shared latent rep-
resentation. This local feature representation is then fed into
a multi-head self-attention module (with 4 attention heads)
to extract global contextual information. After the attention
layer, several CNN layers and a global average pooling oper-
ation are applied to further shuffle and distill the features, pro-
ducing a 128-dimensional hidden representation. We use the



hidden representation to compute the FID features. Finally,
a simple MLP classifier, built on top of the 128-dimensional
hidden layer, outputs the final classification result.

Training The classifier was trained for 10,000 steps with
a batch size of 2,560. We used the Adam optimizer with a
learning rate of 8 x 10~°. Model performance was monitored
on the evaluation set at regular intervals to tune hyperparam-
eters and prevent overfitting.

Results Our final FID classifier achieved an accuracy
of 78.9% on the evaluation set and 78.1% on the testing
set across seven cell types. These results confirm that the
model captures meaningful features distinguishing real en-
hancer sequences from generated ones, making its hidden
representations suitable for reliable FID computation.
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