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A. APPENDIX

A.0.1. A. Query Budget and Training Settings for Data-Free
Model Extraction

During the data generation phase, we employ the Stable Dif-
fusion model to create high-resolution images of 512x512
pixels, operating on the prompts we provided for 50 inference
cycles. Once generated, we downscaled these images to align
with the dimensions of the target datasets. For CIFAR-10,
this meant scaling down from 512x512 to 32x32 pixels, and
for ImageNet subsets, from 512x512 to 256x256 pixels. We
produced a substantial collection of 200k synthetic samples
per dataset, which served as the initial training material for
our substitute models. To ensure consistency, the same train-
ing settings were used for both the original teacher models
and the synthetic substitute models. This entailed using the
SGD optimizer with a momentum of 0.9, a weight decay set
at 5 × 10−4 , and a cosine learning rate scheduler commenc-
ing at a learning rate of 0.1. Our experiments conduct on an
Nvidia-A40 GPU, and the entire distillation training process
take only 10 minutes under a query budget of 5k.

Query Budget. Our approach emphasizes query effi-
ciency, so we consistently apply the same query constraint
across all baseline methods. Specifically, the query budget
is set to Q = 5k for CIFAR-10, Q = 1k for ImageNetette,
Q = 130 for ImageFruit, Q = 50 for ImageYellow, and
Q = 30 for ImageSquaw. In the distillation phase, each
teacher model undergoes a single forward pass with the allot-
ted Q queries using synthetic data, which is the sole instance
we query the teacher model. The top-1 hard-labels gleaned
from this query are preserved for subsequent use. We then
leverage the substitute model’s logits alongside the hard-
labels from the teacher to compute the cross-entropy loss,
thus advancing the substitute model’s training. We measure
performance by conducting three independent trials with 3
random seeds and present the mean top-1 accuracy.

Data and Model. We evaluate our method on a range of
datasets to assess its performance under diverse conditions:
CIFAR-10 [1], CIFAR-100 [1]. In addition, we use special-
ized ImageNet subsets: ImageFruit [2], ImageYellow [2], and
ImageSquaw [2], and Tiny ImageNet [3]. To validate the
generalization and practicality of our method, we experiment
with different model architectures as the target model, includ-
ing AlexNet [4], VGG-16 [5], VGG-19 [5], Wide-ResNet-

16 [6], and ResNet34 [7]. Simultaneously, we also explore
different model architectures as the substitute model, specif-
ically VGG-16, VGG-19, Wide-ResNet-16, ResNet-18 [7],
and ResNet-34 (see details in Tab. 5). All the training param-
eters for the substitute model follow the settings in [8]. The
target model, trained on private, real-world datasets, functions
as a black-box and is only accessible to attackers via queries.
Conversely, the substitute model is exclusively trained on
synthetic data. This setup aims to evaluate the practicality
of our method in environments where direct access to the
target model’s training data is restricted, effectively simulat-
ing a real-world adversarial scenario where attackers depend
on synthetic approximations to challenge and compromise
black-box models.

Baselines. In our experiments, we select two distinct
categories of prevalent approaches. MAZE [9], DFME [8],
and ZSDB3 [10] originally design for soft-label settings (i.e.,
probabilities or logits). Furthermore, we evaluate models
designed for hard-label settings (i.e., return top-1 prediction),
including DFMS [11] and DisGuide [12].

A.0.2. B. Performance Comparison by Soft-Label in Model
Extraction

Table 1. Accuracy (%) of substitute models on datasets with
CIFAR-10, and ImageNet subsets in the soft-label setting. All
results are averaged over three random seeds.

Dataset Teacher MAZE DFME ZSDB3 DFMS-HL DisGuide Ours Query Budget

CIFAR-10 93.9 10.7 10.8 11.1 11.4 13.4 88.8 5k
ImageNette 92.2 11.2 10.3 10.5 11.2 11.8 83.9 1k

ImageSquawk 92.4 10.4 10.6 10.2 11.2 11.7 83.6 30
ImageFruit 78.2 10.2 10.4 11.1 10.9 11.3 70.8 130

ImageYellow 90.8 10.2 10.4 10.6 11.7 11.8 82.4 50

Table 2. Accuracy (%) of student models on datasets of hun-
dreds of classes in the soft-label setting. All results are aver-
aged over three random seeds.

Dataset Teacher MAZE DFME ZSDB3 DFMS-HL DisGuide Ours Query Budget

CIFAR-100 79.89 1.05 1.19 1.25 1.42 1.75 72.3 150k
Tiny-ImageNet 64.55 0.53 0.61 0.67 0.72 0.86 58.5 200k

Our method achieves top-one accuracy rates of 88.9%
and 83.9% on the CIFAR-10 and Imagenette datasets, respec-
tively, marking a substantial improvement over all previous



methods under a constrained query budget. This enhance-
ment stems from the soft label setting during the distillation
learning phase, wherein the substitute model accesses the
target model’s soft labels (i.e., probabilities or logits). This
access enables the substitute to learn a richer set of infor-
mation compared to the hard-label setting. As a result, both
our method and the baseline demonstrate improvements over
results obtained under hard-label conditions. However, the
baseline’s performance remains suboptimal, as demonstrated
in Fig. 1. Specifically, the GANs training framework, oper-
ating under a severely limited query budget, produces only
noisy data, and the training loss fails to converge.

A.0.3. Empirical Studies of Previous Methods

To better demonstrate the training deficiencies of state-of-the-
art methods DFME [8], DisGuid [12] under a restricted 5k
query budget, this section provides an empirical analysis of
the loss changes in their generator and substitute models. Our
experiments are conducted on the CIFAR-10 dataset with a
stringent limit of 20 epochs due to the 5k query budget, high-
lighting the challenges traditional GAN-based training meth-
ods face under such constraints. As depicted in Fig. 1, the
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Fig. 1. Training flaws of previous SOTA methods under 5k
query budget.

left subplot for DisGuid shows a slight reduction in gener-
ator loss (green), decreasing from an initial 5.5 to 4.8 be-
fore it begins to oscillate. However, the loss does not con-
verge and remains high, indicating that the generator fails
to produce high-quality images effectively. The loss for the
substitute model (orange) remains near zero, suggesting that
the generator struggles to generate consistently challenging
images, thereby hindering the substitute model’s ability to
learn effectively from the target model. The right subplot
in Fig. 1 presents the loss values for DFME, where both the
generator and substitute model exhibit significant fluctuations
throughout the training process. This unstable convergence
pattern indicates that under a minimal query budget, the sub-
stitute model struggles to match the target model’s output,
further highlighting the inherent challenges of training tradi-
tional GANs to converge under these conditions.

A.0.4. Ablation Study on Pre-trained Models

In this section, we assess the impact of the pre-training stage
on the performance of substitute models. As indicated in
Tab. 3, eliminating the pre-training stage leads to signifi-
cant performance degradation. Specifically, we evaluated our
method on CIFAR-10, an ImageNet subset, CIFAR-100, and
Tiny ImageNet, using the same query budgets outlined in
(Appendix A). The observed degradations in test accuracy
on these datasets were 33.9%, 16.4%, 17.1%, and 9.1%, re-
spectively. Our training framework diverges from traditional
adversarial training of generators and substitutes by leverage
the online stable diffusion APIs to synthesize high-quality
images. This approach is critical for reducing query budgets,
as pre-training the substitute model proves essential. An ef-
fectively pre-trained substitute model not only reduces the
number of queries required but also accelerates and enhances
the efficiency of the training convergence process during the
knowledge distillation stage.

Table 3. Ablation studies evaluating the impact of the pre-
training stage with Top-1 accuracy. All results are averaged
over three random seeds.

Method CIFAR-10 ImageNet subset CIFAR-100 Tiny-ImageNet

w/ pre-training stage 81.8 69.7 60.5 45.9
w/o pre-training stage 47.9 53.3 43.4 36.8

A.0.5. E. Query Budget and Evaluations For Data-Free Ad-
versarial Transfer Attack

Adversarial transfer presents a more complex challenge than
model extraction because it involves creating adversarial
samples that must maintain high transferability between the
substitute and target models. Consequently, we allocate a
query budget of 150k for both the CIFAR-10 and CIFAR-100
datasets to accommodate this complexity. Our experiments
conduct on an Nvidia-A40 GPU, and the entire adversarial
attacking process take about 45 minutes under a query budget
of 150k. To ensure fair comparisons, the same query budget
is applied to the baselines. We utilize well-known adversar-
ial attack methods such as BIM [13], FGSM [?], PGD [14]
for conducting experiments. The specific parameters set for
these experiments on CIFAR-10 and CIFAR-100 include a
perturbation limit ϵ = 8/255 and the step size at α = 2/255
follow by the setting in [15]. In the untargeted attack mode,
adversarial examples are generated only from images that
the model initially classifies correctly. In contrast, targeted
attack strategies generate adversarial examples solely from
images that are not already misclassified into specific incor-
rect categories. The attack success rate is calculated using the
ratio n/m, where n is the number of adversarial examples
that successfully fool the attacked model, and m is the total
number of adversarial examples created.

Baselines. We select the most prominent baselines for
black-box adversarial attacks, including JPBA [16] and



Knockoff [17], which require access to training data. Addi-
tionally, we evaluate black-box knowledge distillation meth-
ods exploiting probabilities returned by the target model,
with a focus on DFME [8]. Furthermore, we critically ex-
amine data-free black-box attacks using hard-labels, closely
align with our experimental setup, as detailed in (Appendix
E), including DaST [18] and TEBA [15], to underscore the
comparative effectiveness of our approach.

A.0.6. F. Impact Analysis of Query Efficiency in Adversarial
Transfer Attack

An adversarial example x′ for the model fsub of the substitute
is generated by perturbing x such that x′ = x+ δ, where δ is
chosen to maximize Lsub(x

′, y; θ). The goal of the adversarial
attack is to find x′ such that:

argmax fsub(x
′) ̸= y,

and ideally:
argmax ftarget(x

′) ̸= y,

The transferability of adversarial examples from fsub to ftarget
can be quantified as:

T (fsub → ftarget) = P(argmax ftarget(x+ δ) ̸= y |
argmax fsub(x+ δ) ̸= y),

Training on Synthetic Data.

Objective for non-pretrained substitute model f real
sub :

f real
sub = min

fsub
Ex,y∼Dreal [L(fsub(x), y)],

Objective for pretrained substitute model f syn
sub :

f syn
sub = min

fsub
Ex,y∼Dsyn [L(fsub(x), y)],

Effect on Decision Boundary.

The decision boundary in f syn
sub tends to be broader because

the diffusion model generates diverse training data. We de-
fine the decision boundary of a model f as ∂f = {x |
argmax f(x) changes}. If the decision boundary ∂fsyn of
the substitute model is close to that of the target model
∂ftarget, then the adversarial samples generated on f syn

sub are
more likely to transfer effectively to ftarget.

Query Efficiency.

Let Q(fsub → ftarget) represent the number of queries required
to generate a successful adversarial example for the target us-
ing fsub. For f real

sub , the expected number of queries can be
denoted as:

E[Q(f real
sub → ftarget)] =

1

T (f real
sub → ftarget)

,
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Fig. 2. Left: Changes in ACC with different checkpoint in
stage one. Right: Changes in ASR with different checkpoint
in stage one.

For f syn
sub , due to reduced transferability T (f syn

sub → ftarget), the
expected number of queries decreased:

E[Q(f syn
sub → ftarget)] =

1

T (f syn
sub → ftarget)

,

Since T (f real
sub → ftarget) ≤ T (f syn

sub → ftarget) implies:

E[Q(f syn
sub → ftarget)] ≤ E[Q(f real

sub → ftarget)].

Conclusion

Pretraining the substitute model requires fewer queries to
achieve an adversarial transfer attack.

A.0.7. G. Interplay Between Substitute Model Training,
Model Efficacy, and Attack Success

In the initial stage of our experiments, we leverage off-the-
shelf generative models to synthesize high-quality synthetic
data based on benign prompts, followed by the pre-training of
the substitute model. Our objective was to assess the changes
in test accuracy and ASR across different training epochs.
Specifically, our experiments were conducted on the CIFAR-
10 dataset using a ResNet-18 substitute model. We saved a
checkpoint every five epochs and subsequently evaluated each
checkpoint for its corresponding test ACC and ASR.The re-
sults, as depicted in Fig. 2, demonstrate that: 1) the test accu-
racy progressively increases with the advancement of the pre-
training process, and the checkpoint with the highest accuracy
indeed provides an excellent starting point for the distillation
training in the subsequent stage. 2) The experiments indicate
that the ASR initially rises rapidly within the first 0-5 epochs
and then gradually decreases. Consequently, if users require
a model with a higher ASR, early stopping is recommended
to capture a model that delivers superior performance.

A.0.8. Analyzing the Impact of Query Budget on Substitute
Model Efficacy and Attack Success

In this study, we investigate the relationship between two at-
tack methods and the query budget, as well as the interrelation
between these attacks. As illustrated in Fig. 3, the top-one



accuracy of the substitute model improved from 84.22% to
87.8% as the query budget increased from 10k to 200k. For
adversarial transfer attacks employing untargeted and BIM
methods, the ASR rose from 68.79% to 99.32%, demonstrat-
ing convergence. This enhancement can be attributed to the
use of diverse and high-fidelity images generated by off-the-
shelf generative models, which pre-train the substitute model
and provide a rich knowledge base. This approach signifi-
cantly enhances the ability to produce more transferable ad-
versarial examples during attacks. Furthermore, we observed
a positive correlation between the test accuracy of the substi-
tute model and its ASR, confirming that the performance of
data-free model extraction and data-free transfer attack tasks
is positively correlated.
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Fig. 3. Left: ACC and ASR on CIFAR-10 with different
query budget. Right: ACC and ASR on CIFAR-100 with
different query budget.

A.0.9. Performance Comparison by Soft-Label in Adversar-
ial Attack

In this section, recognizing the suboptimal performance of
previous baselines in the hard-label setting, we compare their
effectiveness in the more favorable soft-label setting for a
fairer and more comprehensive evaluation. Both our method
and the baselines show improved performance under soft-
label conditions, as this setting allows the substitute model
to capture more knowledge. However, the baseline’s perfor-
mance remains suboptimal. Specifically, our method achieves
an ASR of 98.68% on CIFAR-10 and 99.68% on CIFAR-100
as shown in Tab. 4, reflecting improvements of 41.85% and
41.74%, respectively, over the previous baselines.

A.0.10. Comparisons with Different Substitute Model

In this section, we demonstrate the generalization and prac-
ticality of our method as shown in Tab. 5. We prove that
an attacker can use various model architectures to perform
model extraction attacks on black-box systems. Fixing the
target model as ResNet-34, we conducted attacks using both
heterogeneous architectures (VGG16, VGG19) and homoge-
neous ones (ResNet-18, ResNet-34, Wide-ResNet-16-8). The
results show that all substitute models in our framework out-
perform previous baselines. Notably, using VGG16 as the

Table 4. ASR(%) comparisons between our proposed method
and baselines over CIFAR-10 and CIFAR-100 under soft-
label settings with a query budget Q = 150k. Best result in
bold. All results are averaged over three random seeds.

Dataset Type Targeted, soft-label Untargeted, soft-label

Method FGSM BIM PGD FGSM BIM PGD

CIFAR-10

JPBA 2.74 3.86 3.93 8.29 10.92 8.62
Knockoff 2.16 3.53 3.37 7.55 10.18 9.06

DaST 3.95 4.19 4.33 8.98 12.53 8.32
DFME 3.55 11.28 8.93 15.13 20.17 17.89
TEBA 10.38 31.8 27.9 34.48 56.83 50.72

Ours 17.27 88.71 85.85 63.95 98.68 98.63

CIFAR-100

JPBA 3.25 4.19 4.24 9.39 11.45 9.75
Knockoff 2.67 4.02 3.87 8.55 11.28 10.13

DaST 4.45 4.69 4.83 9.98 13.53 9.92
DFME 4.55 12.28 9.93 16.13 21.17 18.89
TEBA 11.38 32.8 28.9 35.48 57.94 51.72

Ours 18.27 89.71 86.85 64.95 99.68 99.63

Table 5. Top-1 accuracy comparison between our method
and previous baselines using different substitute model ar-
chitectures. To evaluate the generalization of our approach,
the target model was fixed as ResNet-34, while VGG-16 (V-
16), VGG-19 (V-19), Wide-ResNet-16-8 (WRN16), ResNet-
18 (R-18), and ResNet-34 (R-34) were employed as substitute
models in the hard-label setting. CIFAR-10 and CIFAR-100
employ query budgets of 5k and 150k, respectively. All re-
sults are averaged over three random seeds.

Dataset Method V-16 V-19 WRN16 R-18 R-34

CIFAR-10

DFME 10.52 10.21 10.36 10.96 10.85
ZSDB3 10.43 10.31 10.20 10.83 10.47

DisGuide 12.49 11.20 12.12 12.57 13.37

Ours 80.73 80.44 83.74 81.51 84.41

CIFAR-100

DFME 1.06 1.08 1.05 1.05 1.07
ZSDB3 1.03 1.05 1.07 1.05 1.09

DisGuide 1.13 1.27 1.19 1.27 1.30

Ours 57.56 58.86 59.14 60.51 58.82

substitute model, our method improves the attack success rate
by 68% on CIFAR-10 and 56% on CIFAR-100 compared to
prior baselines.

A.0.11. Visualization of Synthetic Data

In this subsection, we present synthesized examples from
DFME [8], DisGuide [12], and our method to investigate
the underlying reasons for the baseline performance approxi-
mating random guessing. Our objective is to corroborate the
experimental results shown in ?? and ?? by demonstrating
the synthesized images and training stage loss (see details
Appendix A.0.3) produced by DFME and DisGuide within
a 5k query budget constraint. As illustrated in Fig. 4, the
images generated by DFME and DisGuide under this limited
query budget appear nearly as random noise, lacking dis-
cernible patterns. This similarity in noisy patterns indicates
that these GAN-based generators struggle with training under
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Fig. 4. Visualization of synthetic images generated by base-
line DFME and DisGuide with a 5k query budget.

data scarcity, leading to model collapse and difficulties in
achieving convergence.

Table 6. Ablation studies evaluating the impact of the pre-
training stage with Top-1 accuracy. All results are averaged
over three random seeds.

Method CIFAR-10 ImageNet subset CIFAR-100 Tiny-ImageNet

w/ pre-training stage 81.8 69.7 60.5 45.9
w/o pre-training stage 47.9 53.3 43.4 36.8

A.0.12. Effect Investigation of Pre-training model in Model
Extraction

In model extraction, the objective is to approximate the target
model’s behavior by training a substitute model on the tar-
get model’s outputs. The parameters of the substitute model,
denoted as θsub, are optimized using the cross-entropy loss
function, which is minimized through gradient-based updates.
Given an input x and its corresponding one-hot label y, the
predicted probability for class yi by the substitute model is
Pθsub(yi|x). The cross-entropy loss function is defined as fol-
lows:

LCE(Pθsub(y|x), y) = −
C∑
i=1

yi logPθsub(yi|x), (1)

where C denotes the total number of classes, and yi is the
i-th component of the label y, where yi = 1 if y = i and
yi = 0 otherwise. This loss function quantifies the divergence
between the predicted and true distributions. To optimize the
substitute model parameters θsub, we compute the gradient of
the loss function:

∇θsubLCE(Pθsub(y|x), y) = −
C∑
i=1

yi∇θsub logPθsub(yi|x), (2)

where ∇θsub logPθsub(yi|x) denotes the gradient of the log-
probability function with respect to θsub. Using the chain rule,
this gradient expands to:

∇θsub logPθsub(yi|x) =
1

Pθsub(yi|x)
∇θsubPθsub(yi|x), (3)

where ∇θsubPθsub(yi|x) denotes the gradient of the predicted
probability with respect to θsub. Substituting this into the orig-

inal gradient formula yields the final expression:

∇θsubLCE(Pθsub(y|x), y) = −
C∑
i=1

yi
Pθsub(yi|x)

∇θsubPθsub(yi|x),

(4)
This formula outlines the gradient update process for the sub-
stitute model in model extraction. Iterative updates to θsub
progressively align the substitute model’s behavior with that
of the target model, enabling efficient model extraction.

Case 1: Pretrain with Synthetic Images.

We first pretrain the substitute model θpretrain
sub on synthetic im-

ages, aiming to minimize the expected cross-entropy loss be-
tween the substitute model’s predictions and the true labels:

θpretrain
sub = argmin

θsub
Ex∼Dsyn [LCE (Pθsub(y|x), y)] , (5)

where Dsyn denotes the synthetic dataset, and LCE is the cross-
entropy loss. Given that the synthetic data distribution Dsyn is
designed to approximate the real data distribution Dreal, the
pretrained parameters θpretrain

sub are expected to be closely align
to the target model’s parameters θtarget.

Fine-tune Step.

After pre-training, we fine-tune the substitute model using a
limited set of queries.

θfine-tune
sub = argmin

θsub
Ex∼X̂query

[
LCE

(
Pθsub(y|x), Pθtarget(y|x)

)]
,

(6)
where X̂query represents the set of input queries sampled for
fine-tuning. Given that θpretrain

sub is already close align to θtarget,
the gradient of the loss function with respect to the pretrained
parameters is expected to be small:

∇θpretrain
sub

LCE

(
Pθpretrain

sub
(y|x), Pθtarget(y|x)

)
≈ 0, (7)

This small gradient implies that only minor adjustments are
necessary during fine-tuning, making the process efficient and
requiring fewer queries to the target model.

Case 2: Train from Scratch.

In contrast, when training the substitute model from scratch,
the optimization problem is formulated as:

θscratch
sub = argmin

θsub
Ex∼X̂query

[
LCE

(
Pθsub(y|x), Pθtarget(y|x)

)]
,

(8)
Since the parameters θscratch

sub start from an uninitialized state,
far from the target model’s parameters θtarget, the initial gradi-
ents will be large:

∇θscratch
sub

LCE

(
Pθscratch

sub
(y|x), Pθtarget(y|x)

)
≫ 0. (9)



Conclusion.

The comparison of these two scenarios illustrates that a syn-
thetically pre-trained substitute model significantly reduces
the need for extensive parameter adjustments, requiring fewer
queries and leading to a more efficient extraction process,
while training from scratch involves larger gradients and de-
mands more queries to the target model, resulting in a longer
training period.
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