
ENACT: ENTROPY-BASED CLUSTERING OF ATTENTION INPUT FOR REDUCING THE
COMPUTATIONAL RESOURCES OF OBJECT DETECTION TRANSFORMERS -

SUPPLEMENTARY MATERIAL

1. CLUSTERING DESCRIPTION

After calculating the Keys’ entropy and identifying its con-
cave and convex regions, we must reduce the Keys and Val-
ues by regions of same curvature sign. Additionally, we
want the values of the entropy to be normalized so that
their sum within a region equals to 1. To do that we run
a softmax function on each separate region whose indices
correspond to regions of the same sign in the result of the
convolution of the entropy with the 2d Sobel kernel. For
example, assume that at one point the output of the step
function is [...1, 1, 1,−1,−1, 1, 1, 1, 1, ...] and the indices are
[...i, i+1, ..., i+8, ...]. In the respective indices of the entropy
the softmax function will be run on three separate regions,
which are from i to i + 2, i + 3 to i + 4 and i + 5 to i + 8.
The exact computation is shown in Eq. 1, where Hj is the
self-information of pixel j.
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Let Hs be the signs of the entropy curvature, H the self-
information values, and K and V be the Keys and Values re-
spectively. Initially, K,V ∈ RN×HW×d, while H ∈ RN×HW

and the same goes forHs, where N is the batch size, HW the
total number of pixels in the feature map, i.e. the spatial di-
mensions, and d the dimensions of the feature vector. Firstly,
we flatten them all along the batch size, making H and Hs
1-dimensional and K, V 2-dimensional. Subsequently, we lo-
cate the regions of same curvature sign by keeping the indices
where the sign changes, as well as the length of the regions
by subtracting consecutive region start indices. By default we
consider that integer multiples of the spatial dimensions are

Algorithm 1 Cluster Algorithm
K, V: Unclustered Keys and Values
K’, V’: Clustered Keys and Values
H: Entropy Values
Hs: Entropy Curvature signs
RSI: Region Start Indices
RL: Region Lengths
N: Number of Regions
d: Feature Vector Dimension
ThIdx: Thread Id along the x axis
ThIdy: Thread Id along the y axis
if ThIdx < N and ThIdy < d then

sK← 0
sV← 0
sExp← 0
for RSI[ThIdx] ≤ i < RSI[ThIdx] + RL[ThIdx] do

sK← sK− exp(H[i]) ∗ Hs[i] ∗K[i ∗ d + ThIdy]
sV← sV − exp(H[i]) ∗ Hs[i] ∗V[i ∗ d + ThIdy]
sExp← sExp + exp(H[i])

end for
K′[ThIdx ∗ d + ThIdy]← sK/sExp
V′[ThIdx ∗ d + ThIdy]← sV/sExp

end if

also region start indices, because they are the starting points
of a different feature map.

Our clustering function takes K, V,H,Hs, the region start
indices and the region lengths as input, and outputs K’, V’,
which are the clustered Keys and Values respectively. In order
to implement the pixel grouping, regardless of the region size,
in an optimal manner, we create a CUDA kernel which makes
use of 2D thread blocks. Along one dimension, the number of
threads is the same as the number of regions, and the other the
feature vector dimension. The detailed pseudocode is shown
in Algorithm 1 and we also provide a visualization of the pro-
cess in Figure 1. The newly created K′,V′ ∈ RL×d where L
is the total number of pixels of the clustered Keys and Values
and is much smaller than NHW.



Fig. 1. Visualization of the ENACT clustering process. The weighted entropy values are multiplied with the curvature signs,
and then with the feature vectors of the Keys or Values. Each region with same curvature sign corresponds to a thread in the
CUDA kernel. The grouping is done by summing the elements in the same region, with as many iterations as the number of
pixels corresponding to that thread. Therefore, the number of rows in the clustered output will be the number of threads.

2. GRADIENT CALCULATION

In order to correctly calculate the gradients of K and V that
pass through the clustering algorithm, we need to consider
the connections each variable has with each of the resulting
outputs.
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For K and V it is more straightforward since they are not
interconnected with K’, V’, namely K is used only for the
calculation of K′ and V for V′. Starting therefore, with the

gradients of K and V, let L denote the loss, and
∂L
∂K′ ,
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the gradients of the clustered Keys and Values respectively.
Each index of the original unclustered input is used to com-
pute only one index of the clustered output, which simplifies

the calculations. Let i denote indices of the original input, and
j those of the clustered output. Therefore, 0 ≤ i < NHW, and
0 ≤ j < L. In Equation 2 we show the mathematical formula
of the clustering’s forward pass and resulting backward pass
for the computation of the gradients of K and V. The values
n and m correspond to the starting index of the original input
and region length respectively that correspond to the region j.
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For the gradient of the entropy however, the process is more
complicated because it is used for the calculation of both K’
and V’. Therefore, its gradient will be given by the chain rule

consisting of both
∂L
∂K′ and

∂L
∂V′ . The exact formula for cal-

culating the gradient of the entropy is shown in Equation 3.



3. SELF ATTENTION ADJUSTMENTS

The original self attention module in detection transform-
ers takes Queries (Q) and Keys (K) as input where both
Q,K ∈ RN×HW×d, which means that the attention weights
have shape N×HW ×HW. With our module, K′ ∈ RL×d

and the number of pixels L consists of all the feature maps.
Therefore, we have to ensure that each Query feature map in
the batch is connected with its correct clustered counterpart of
the Keys. To that end, we keep the indices where each feature
map begins in the clustered Keys K’. Again we try to take
advantage of GPU parallelism, by implementing a CUDA
kernel with 2d blocks, where the first axis of threads corre-
sponds to the Query pixels, and the second to the clustered
Key ones. Q threads that belong to the nth feature map, are
enforced by condition to be matched with K’ threads whose
id lies between the nth and nth plus 1 starting index. There-
fore, the attention weights dot product is computed between
equivalent feature maps. In a similar manner we compute the
attention map which is the product of the attention weights
and Values.
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