
SUPLEMENTARY MATERIAL FOR
DEEP UNSUPERVISED DESPECKLING WITH UNBIASED RISK ESTIMATION

1. NOTATIONS

Throughout the paper and the supplementary material, we use the following notations:

1. Y to denote m dimensional multivariate (vector) random variables.

2. y to denote m dimensional samples from the corresponding random variables.

3. Y to denote scalar random variables.

4. y to denote samples from the corresponding scalar random variable or a constant depending on the context.

5. Yi is ith scalar random variable of a vector random variable Y.

6. yi is ith pixel represented as realization of a scalar random variable Y .

7. E is expectation operator (underlying random variable is clear from context or mentioned explicitly), ⊙ is element-wise
(Hadamard) product.

2. DETAILS ON UNBIASED RISK ESTIMATION

2.1. Oracle MSE

Our aim is to obtain an estimate of x (a realization of X), given the measurement y, which is a realization of random image
variable Y. We denote this estimate as a function of observables, x̂ = f(Y). In general, f may be any linear or non-linear,
parametric or non-parametric function. The criterion which we choose to minimize is the ensemble-averaged mean-square error
(or risk) between x and x̂

ζ(f) =
1

m
E{∥f(Y)− x∥2} =

1

m

m∑
i=1

(xi − fi(Y))2, (1)

which requires knowledge of the ground-truth reflectance x. Consider the expansion of Eq. (1) (without the factor 1/m),

ζ(f) = ∥x∥2 + E{∥f(Y)∥2} − 2

m∑
i=1

E{xifi(Y)}, (2)

where fi(Y) denotes the ith entry of the denoised image. Since the optimization is carried out with respect to f , the deterministic
(but unknown) factor ∥x∥2 does not play a role (in contrast with the Bayesian framework, where a prior is assumed on x). On
the other hand, the term E{xifi(Y)} depends on the unknowns xi and hence a direct optimization is not possible without
knowledge of the ground truth image. Throughout our work, we call this version of the cost the Oracle MSE estimate.



2.2. Proof of Corollary 1.1 (our result from main paper)

To estimate the Oracle MSE without the ground truth, unbiased risk estimation methods can be applied. Seelamantula and Blu
[1] first presented a surrogate risk for the case of multiplicative Gamma distributed noise model called Multiplicative Unbiased
Risk Estimate (MURE). In this section, We present a detailed proof of corollary 1.1 from the main paper.

Theorem 1. (Multivariate version) Let Y = xN, where x ∈ Rm
+ is deterministic but unknown reflectance image. Let Y,N ∈

Rm
+ , and N ∼ Γ(k, k) with independent entries, then, the vector random variable

ζ̂(f) =
k

k + 1
∥Y∥2 − 2YTMf(Y) + ∥f(Y)∥2 (3)

is an unbiased estimator of the MSE, ζ(f) = EN{∥f(Y)− x∥2}, where E is the expectation operator. For a scalar function
f(Y ), the operator M is defined as Mf (Y ) = k

∫ 1

0
sk−1f(sY )ds. This notation is extended straightforwardly to multivariate

vector functions f(Y) = [f1(Y), f2(Y), . . . , fm(Y)]T according to Mf(Y) = [M1f1(Y),M2f2(Y), . . . ,Mmfm(Y)]T,
where Mifi(Y) applies the operator M to the ith input component of f(Y) only.

Corollary 1.1. (Multivariate, series version of MURE) Let Y = xN, where x ∈ Rm
+ is deterministic but unknown reflectance

image. Let Y,N ∈ Rm
+ , and N ∼ Γ(k, k) with independent entries, then, the vector random variable

ζ̂(f) =
k

k + 1
∥Y∥2 + ∥f(Y)∥2 − 2

m∑
i=1

∞∑
p=0

(−1)p
k!

(k + p)!
Y p+1
i

∂f
(p)
i (Y)

∂Yi
, (4)

is an unbiased estimator of the MSE, ζ(f) = EN{∥f(Y)− x∥2}, where E is the expectation operator. p is the order of partial
derivative of fi(Y) w.r.t. Yi, the ith pixel of the input noisy image.

Proof. We first prove the case for a scalar function f : R −→ R. We have:

E{(f(Y )− x)2} = E{f(Y )2}+ E{x2} − 2E{xf(Y )}.

Expanding term by term,

• E{Y 2} = E{x2n2} = k+1
k E{x2}, and hence

E{x2} =
k

k + 1
E{Y 2}. (5)

• We have, E{xf(Y )}

=

∞∫
0+

x f(Y ) fN (n)dn

=

∞∫
0+

x f(Y )
kk

Γ(k)
nk−1e−kndn

=

∞∫
0+

kx f(Y )
nkkk

Γ(k)

[
e−kn

nk

]
dn

=

∞∫
0+

kx f(Y )

 1∫
0+

nkkk

Γ(k)

1

s2
e−kn/sds

 dn

=

∞∫
0+

kx

 1∫
0+

f(xn)
nsk−1

s2
fN (n/s)ds

 dn,



changing the order of integration and substituting p = n/s,

∞∫
0+

kx

 1∫
0+

f(xn)
nsk−1

s2
fN (n/s)ds

 dn

=

1∫
0+

∞∫
0+

kxp f(xps) sk−1fN (p) dp ds

=

∞∫
0+

Y

 k

1∫
0+

f(sY ) sk−1ds

 fN (p)dp,

= E{YMf(Y )}. (6)

where we applied change of order of integration (assuming conditions of Fubini’s theorem to be true and that the limit exists at
0) again, and substituted Y = xp. Using (5) and (6), we have, E{(f(Y )− x)2}

= E
{
f(Y )

2 − 2YMf(Y ) +
k

k + 1
Y 2

}
.

= E{ζ̂(f)}.

Which shows that the MURE cost ζ̂(f) is an unbiased estimator of the oracle cost ζ(f). For a scalar function f(Y ), the
operator M is defined as Mf (Y ) = k

∫ 1

0
sk−1f(sY )ds. This notation is extended straightforwardly to multivariate vector

functions f(Y) = [f1(Y), f2(Y), . . . , fm(Y)]T according to Mf(Y) = [M1f1(Y),M2f2(Y), . . . ,Mmfm(Y)]T, where
Mifi(Y) applies the operator M to the ith input component of f(Y) only. Hence, the multivariate result is straightforward to
obtain by applying the scalar version of the estimator in Theorem 1 of the main paper to the individual components of the cost
function in (1). Thus the cost for a vector function can be written as

ζ̂(f) =
k

k + 1
∥Y∥2 + ∥f(Y)∥2 − 2YTMf(Y) (7)

For the series approximation, we note that the cross term operator M for a vector to vector function can be expanded by
applying the integration-by-parts operation:

Mifi(Y) = Mifi(Y1, Y2, ..., Yi, ..., Ym)

= k

∫ 1

0

sk−1fi(Y1, Y2, ..., sYi, ..., Ym) ds,

= k

∫ 1

0

sk−1fi(SiY) ds,

= skfi(SiY)
∣∣1
0
−
∫ 1

0

Yif
′

i (SiY) sk ds,

= fi(Yi)−
∫ 1

0

Yif
′

i (SiY) sk+1 ds,

= fi(Y)−

(
sk+1

k + 1
Yif

′

i (SiY)

∣∣∣∣1
0

−
∫ 1

0

Yif
′

i (SiY) sk+1 ds

)
,

= fi(Y)− 1

k + 1
Yif

′

i (Y) +
1

k + 1

∫ 1

0

Yif
′

i (SiY) sk+1 ds),

=

∞∑
p=0

(−1)p
k!

(k + p)!
Y p
i

∂f
(p)
i (Y)

∂Yi
, (8)

where Si is a matrix constructed by replacing ith diagonal element of identity matrix by s. Finally, writing all terms together



for the vector version, we have:

EN{ζ̂(f)} = EN

{
k

k + 1
∥Y∥2 + ∥f(Y)∥2 − 2

m∑
i=1

∞∑
p=0

(−1)p
k!

(k + p)!
Y p+1
i

∂f
(p)
i (Y)

∂Yi

}

= EN

{
k

k + 1
∥Y∥2 + ∥f(Y)∥2 − 2YTMf(Y)

}
= EN

{
∥x∥2 + ∥f(Y)∥2 − 2

m∑
i=1

xifi(Y)

}
= EN{ζ(f)}.

Thus, our proposed series-version of MURE is an unbiased estimator of the Oracle cost in Eq. 1. This completes the
proof.

3. MONTE CARLO ESTIMATION OF SERIES VERSION OF MURE

In this section, we state and prove the key results for Monte Carlo estimation of the MURE cost from the main paper.

Theorem 2. Let f(Y) : Rm −→ Rm be a differentiable function and Jf denote its Jacobian. Let B ∈ Rm with i.i.d entries

∼ N (0, 1). Then,
∑m

i=1[Jf (Y)]iiY
2
i = limϵ−→0 EB

{
(Y ⊙B)T

(
f(Y+ϵ(Y⊙B))−f(Y−ϵ(Y⊙B))

2ϵ

)}
.

Proof. Let B ∈ Rm with i.i.d entries ∼ N (0, 1). Applying the Taylor-series expansion, we have,

f(Y + ϵ(Y ⊙B)) = f(Y) + ϵ Jf (Y)(Y ⊙B) + ϵ2h.o.t. , (9)

A similar expansion exists for f(Y − ϵ(Y ⊙B)):

f(Y − ϵ(Y ⊙B)) = f(Y)− ϵ Jf (Y)(Y ⊙B) + ϵ2h.o.t. , (10)

Subtracting Eq. 10 from Eq. 9 and dividing by 2ϵ gives

f(Y + ϵ(Y ⊙B))− f(Y − ϵ(Y ⊙B))

2ϵ
= Jf (Y)(Y ⊙B) +O(ϵ2).

Taking inner product with (Y ⊙B) and computing the expectation w.r.t. B yields

EB

{
(Y ⊙B)T

(
f(Y + ϵ(Y ⊙B))− f(Y − ϵ(Y ⊙B))

2ϵ

)}
= EB

{
(Y ⊙B)TJf (Y)(Y ⊙B)

}
+O(ϵ2)

= EB

{
m∑
i=1

[Jf (Y)]iiY
2
i bi

2 +O(ϵ2)

}

=

m∑
i=1

[Jf (Y)]iiY
2
i +O(ϵ2)

Where the last step follows from the fact that E{bibj} = 0 and E{b2i } = 1. Taking limit of this expression with ϵ −→ 0 yields
the desired result.

To actually compute this expectation, we utilize K realizations of B and n variations of ϵ. Hence, the estimate is evaluated as:

m∑
i=1

[Jf (Y)]iiY
2
i =

1

nK

K∑
r=1

n∑
s=1

{
(Y ⊙Br)

T

(
f(Y + ϵs(Y ⊙Br))− f(Y − ϵs(Y ⊙Br))

2ϵs

)}
. (11)

For all our experiments n = K = 1 yields reasonably good approximation with low computational complexity.



Theorem 3. Let f(Y) : Rm −→ Rm be at a twice differentiable function and [Hf ]i denote the Hessian of fi. Let B ∈ Rm with

i.i.d entries ∼ Triangular(−2, 1). Then
∑m

i=1[Hf (Y)]iiiY
3
i = limϵ−→0 EB

{
−5(Y ⊙B)T

(
f(Y+ϵ(Y⊙B))−2f(Y)+f(Y−ϵ(Y⊙B))

ϵ2

)}
.

Proof. Let B ∈ Rm with i.i.d entries ∼ Triangular(−2, 1). Triangular(−2, 1) denotes the Triangular distribution with
parameters a = −2 and b = 1 with moments µ1 = 0, µ2 = 1, µ3 = −1

5 . We have,

f(Y + ϵ(Y ⊙B)) = f(Y) + ϵ Jf (Y)(Y ⊙B) +
1

2
ϵ2


(Y ⊙B)

T
H1(Y ⊙B)

(Y ⊙B)
T
H2(Y ⊙B)
...

(Y ⊙B)
T
Hm(Y ⊙B)

+ ϵ3h.o.t. . (12)

Where Hi denotes hessian of the function fi. A similar expansion exists for f(Y − ϵ(Y ⊙B)):

f(Y − ϵ(Y ⊙B)) = f(Y)− ϵ Jf (Y)(Y ⊙B) +
1

2
ϵ2


(Y ⊙B)

T
H1(Y ⊙B)

(Y ⊙B)
T
H2(Y ⊙B)
...

(Y ⊙B)
T
Hm(Y ⊙B)

+ ϵ3h.o.t. . (13)

Adding Eq. 12 and Eq. 13 gives:

f(Y + ϵ(Y ⊙B)) + f(Y − ϵ(Y ⊙B)) = 2 f(Y) + ϵ2


(Y ⊙B)

T
H1(Y ⊙B)

(Y ⊙B)
T
H2(Y ⊙B)
...

(Y ⊙B)
T
Hm(Y ⊙B)

+ ϵ3h.o.t. ,

Rearranging the terms, we have:

f(Y + ϵ(Y ⊙B)) + f(Y − ϵ(Y ⊙B))− 2 f(Y)

ϵ2
=


(Y ⊙B)

T
H1(Y ⊙B)

(Y ⊙B)
T
H2(Y ⊙B)
...

(Y ⊙B)
T
Hm(Y ⊙B)

+ ϵ3h.o.t. ,

Taking inner product with (Y ⊙B) and computing expectation w.r.t B gives:

EB

{
(Y ⊙B)T

(
f(Y + ϵ(Y ⊙B))− 2f(Y) + f(Y − ϵ(Y ⊙B))

ϵ2

)}

= EB

(Y ⊙B)T


(Y ⊙B)

T
H1(Y ⊙B)

(Y ⊙B)
T
H2(Y ⊙B)
...

(Y ⊙B)
T
Hm(Y ⊙B)

+ ϵ3h.o.t.

 ,

= EB

∑
i

∑
j

∑
k

[Hi]jkYiYjYkbibjbk + ϵ3h.o.t.

 . (14)

Since for B, the entries are i.i.d with moments µ1 = 0, µ2 = 1, µ3 = −1
5 , Eq. 14 reduces to:

EB

{
(Y ⊙B)T

(
f(Y + ϵ(Y ⊙B))− 2f(Y) + f(Y − ϵ(Y ⊙B))

ϵ2

)}
= −1

5

∑
i

[Hi]iiY
3
i + ϵ3h.o.t.. (15)



Taking the limit with ϵ −→ 0 vanishes the higher-order terms. With a minor re-arrangement, we can write Eq. 16 as:

lim
ϵ−→0

EB

{
−5(Y ⊙B)T

(
f(Y + ϵ(Y ⊙B))− 2f(Y) + f(Y − ϵ(Y ⊙B))

ϵ2

)}
=
∑
i

[Hi]iiY
3
i (16)

Which completes the proof. Note that we write [Hi]ii as [Hf ]iii in the main paper to make explicit the fact that the Hessian is
that of the function f .

Just like the p = 1 term, to compute this expectation, we utilize K realizations of B and n variations of ϵ. Hence, the estimate
is evaluated as:

∑
i

[Hf ]iiiY
3
i =

1

nK

K∑
r=1

n∑
s=1

{
−5(Y ⊙Br)

T

(
f(Y + ϵs (Y ⊙Br))− 2f(Y) + f(Y − ϵs (Y ⊙Br))

ϵ2s

)}
. (17)

For all our experiments n = K = 1 yields reasonably good approximation with low computational complexity.
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