
SUPPLEMENTARY MATERIAL OF DIFFUSE AND REFINE LATENT PRIOR
WITH TRANSFORMERS FOR NEURAL ISP

7. IMPLEMENTATION DETAILS

As mentioned in § 3.3, the training of D&R includes two stages.
For Stage 1, D&R consists of the latent encoder (LE) and the
regression-based Transformer. We directly adopt the architec-
ture of LE in [16], and the details are given in the following.
The ground-truth latent prior z 2 RN⇥C

0
is generated by LE

with N = 256 and C
0 = 256. As for the regression-based

Transformer, we apply Restormer, a 4-level encoder-decoder
Transformer architecture. From Level 1 to Level 4, we set
the number of Transformer blocks as [3, 5, 6, 6], which are
denoted as [L1, L2, L3, L4] in Fig. 4, the number of channels
as [48, 96, 192, 384], i.e., C = 48, and the attention heads as
[1, 2, 4, 8]. Besides, there are 4 blocks in the refinement stage,
i.e., Lr = 4. The channel expansion factor is 2. For Stage
2, D&R consists of the regression-based Transformer, LEDT,
Diffusion Transformer (DT) and Refinement Transformer (RT).
The architecture of LEDT is the same as that of LE. For DT,
there are 4 DT blocks, i.e., LDT = 4, and the iteration number
T = 32. As for RT, there are 2 RT blocks, i.e., LRT = 2, and
the token number of the learned latent bottleneck h is 128, i.e.,
N

0 = 128. All these hyperparameters are chosen empirically.
Latent Encoder (LE). As shown in Fig. 1, given the demo-
saicked RAW image IDem 2 RH⇥W⇥3 and its corresponding
ground-truth counterpart IGT 2 RH⇥W⇥3, we first concate-
nate them along the channel dimension and feed them into
LE to generate the latent prior z 2 N ⇥ C

0. Here H and W

represent the image height and width, while N and C
0 are the

token number and channel dimensions of z. Importantly, the
token number N is a constant much smaller than H ⇥W . The
compression ratio (H⇥W

N
) is much higher than that applied in

previous latent diffusion. Therefore, the computational burden
of the subsequent latent diffusion model is effectively reduced.
The details of LE are depicted in Fig. 5, which contains L

residual blocks. The architecture of LEDT is the same as LE
except that the input channel of the first convolutional layer
is 3 instead of 6, because LEDT takes as input only the de-
mosaicked RAW image IDem 2 RH⇥W⇥3. We set N = 256,
C

0 = 256, and L = 5.
Hierarchical Integration Module (HIM). To effectively inte-
grate the latent prior and intermediate feature of the regression-
based Transformer, we adopt HIM. As illustrated in Fig. 4, the
HIM is placed in front of each encoder and decoder. For each
HIM, cross-attention is computed between the latent prior and
intermediate features for feature fusion. This module allows
the information in the latent prior to be aggregated into features
of the regression-based Transformer. Specifically, as shown
in Fig. 6, given the intermediate feature Xin 2 RĤ⇥Ŵ⇥Ĉ ,
we reshaped it as tokens Xr 2 RĤŴ⇥Ĉ ; where Ĥ ⇥ Ŵ is
spatial resolution and Ĉ denotes channel dimension. Then we

linearly project Xr into Q 2 RĤŴ⇥Ĉ (query). Similarly, we
project the latent prior z̄i 2 RN̂⇥C

0
as K 2 RN̂⇥Ĉ (key) and

V 2 RN̂⇥Ĉ (value). The cross-attention is formulated as:

Q = WQXr,K = WK z̄i,V = WV z̄i,

Attention(Q,K,V) = SoftMax(QKT
/

p
Ĉ) ·V,

(3)

where WQ 2 RĈ⇥Ĉ , WK 2 RC
0⇥Ĉ , and WV 2 RC

0⇥Ĉ

represent learnable parameters of linear projections without
bias. As vanilla multi-head self-attention, we separate channels
into multiple “heads” and calculate the attention operations.
Note that Fig. 6 depicts the situation with a single head and
omits some details for simplification. Finally, we reshape and
project the output of cross-attention, and add it with Xin to
derive the output feature Xout 2 RĤ⇥Ŵ⇥Ĉ . For z̄1, N̂ =
256; for z̄2, N̂ = 64; for z̄3, N̂ = 1.
Global Color Mapping (GCM) module. For optical flow
estimation, GCM’s output IGCM is required to satisfy two
prerequisites: (i) IGCM should imitate the color of the ground-
truth image IGT for diminishing the severe color inconsistency;
(ii) the spatial position of the pixels should keep the same as
the input demosaicked RAW image IDem. Thus, as shown in
Fig. 7, GCM adopts a Spatially Preserving Network (SPN) as
its backbone, which is composed of a stack of 1⇥ 1 convolu-
tional layers, and further employs a GuideNet to extract the
color information from IGT as the condition for the backbone.
Besides, for the purpose of anti-vignetting, GCM takes a 2D
coordinate map ICoord as another input. With IGCM, we use
PWC-Net [25] to estimate the optical flow for warping IGT.
The warped sRGB image IwGT can then be adopted as the su-
pervision for training GCM, the regression-based Transformer
and LE. In Eq. 1 and Eq. 2 of the submission, we introduce m
as a mask indicating valid positions of the optical flow. Here
each element mi of m is defined as

mi =

⇢
1, [W(1, )]i � 1� ✏

0, otherwise , (4)

where W is a warping function, 1 denotes an all-1 matrix,  
is the estimated optical flow, ✏ is a threshold set to 0.001, and
[·]i denotes the i-th element of a matrix.
Diffusion Transformer (DT). The hidden dimension of DT is
256. DT has 4 DT blocks. Within each DT block, the number
Multi-Head Self Attention (MHSA) heads is 4, and the mlp
ratio of the Pointwise FeedForward (PFF) is 4.0.
Refinement Transformer (RT). RT is made up of 2 RT blocks,
a final cross-attention module, and a learned latent bottleneck.
Within each RT block, the number of cross-attention heads
is 1, and the hidden dimension per head is 128; the number
of MHSA heads is 4, and the hidden dimension per head is
64; the hidden dimension for two PFFs is 256. For the final
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Fig. 5. The architecture of LE and LEDM.

cross-attention module, the head number is 1, and the hidden
dimension per head is 128. For the learned latent bottleneck,
its token number is 128.
D&R (Tiny). From Level 1 to Level 4, we set the number
of Transformer blocks as [3, 3, 4, 4] and the number of chan-
nels as [40, 80, 160, 320]. Besides, there are 3 blocks in the
refinement stage. We set the dimensions of the latent prior as
N = 16 and C

0 = 256. Accordingly, we set the token number
of the learned latent bottleneck in RT as N 0 = 8. The iteration
number of DT is set as T = 12. All the other hypeparameters
are kept the same as those of D&R.

8. DIFFUSION MODEL (DM)

In Stage 2, DT based DM is trained to predict the latent prior
ẑ which mimics the ground-truth latent prior z generated in
Stage 1. Our DM is based on conditional denoising diffusion
probabilistic model [26]. DM involves a forward diffusion
process and a reverse denoising process.

In the forward diffusion process, given a ground-truth im-
age, we first adopt the latent encoder (LE) trained in Stage 1 to
generate the ground-truth latent prior z. Let z0 = z. We take
z0 as the starting point of the forward Markov process, and
gradually add Gaussian noise to it over T iterations as follows:

q(z1:T | z0) =
TY

t=1

q(zt | zt�1),

q(zt | zt�1) = N (zt;
p
1� �tzt�1,�tI),

(5)

where t = 1, . . . , T ; zt represents the noisy latent prior at the
t-th step; �1:T 2 (0, 1) are hyperparameters that control the
variance of the noise; N denotes the Gaussian distribution.
Through iterative derivation with reparameterization, Eq. (5)
can be written as:

q(zt | z0) = N
�
zt;

p
↵̄tz0, (1� ↵̄t)I

�
,

↵t = 1� �t, ↵̄t =
tY

i=1

↵i.
(6)
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In the reverse process, we aim to predict the latent prior
from a pure Gaussian distribution. The reverse process is
a T -step Markov chain that runs backwards from zT to z0.
Specifically, for the reverse step from zt to zt�1, we use the
posterior distribution as:

q(zt�1 | zt, z0) = N
�
zt�1;µt

(zt, z0),
1� ↵̄t�1

1� ↵̄t

�tI
�
,

µ
t
(zt, z0) =

1
p
↵t

(zt �
1� ↵tp
1� ↵̄t

✏),
(7)

where ✏ represents the noise in zt, and is the only uncertain
variable. Following [26], we adopt a denoising network ✏✓ to
estimate the noise ✏ for each step. Since DM operates in the la-
tent space, we utilize another latent encoder (LEDT), with the
same architecture as LE. LEDT compresses the demosaicked
RAW image into latent space to get the conditional latent fea-
ture c. The denoising network predicts the noise conditioned
on zt and c, i.e., ✏✓(zt, c, t). With the substitution of ✏✓ in
Eq. (7) and setting the variance to (1� ↵t), we get

zt�1 =
1

p
↵t

�
zt �

1� ↵tp
1� ↵̄t

✏✓(zt, c, t) +
p
1� ↵t✏t

�
, (8)

where ✏t ⇠ N (0, I). By iteratively sampling zt using Eq. (8)
T times, we can predict the latent prior ẑ as shown in Fig. 1 (a).
ẑ is then used to guide the regression-based Transformer, i.e.,
z̄1 = ẑ. Notably, since the distribution of the latent space
(RN⇥C

0
) is much simpler than that of images (RH⇥W⇥C ), the

latent prior can be generated with a small number of iterations.
Training DM means training denoising network ✏✓. Previ-

ous works train DM by optimizing the weighted variational
bound with the following training objective:

r✓k✏� ✏✓(
p
↵̄tz+

p
1� ↵̄t✏, c, t)k22, (9)

where z and c are the ground-truth latent prior and conditional
latent feature defined above; t 2 [1, T ] is a random time-
step; ✏ ⇠ N (0, I) denotes the sampled noise. However, the
objective in Eq. (9) only trains DM. Since the slight deviation
between the predicted latent prior ẑ and the ground-truth latent
prior z, directly combining DM with the regression-based
Transformer could cause a mismatch, which restricts the RAW-
to-sRGB mapping performance.

To overcome this issue, we jointly train DM and the
regression-based Transformer. Specifically, for each training
iteration, we use the ground-truth latent prior z to generate
the noisy sample zT through Eq. (5). As the time-step T is
small in latent space, we then run the complete T iteration
reverse processes (Eq. (8)) to predict the latent prior ẑ which
is used to guide the regression-based Transformer through
HIM (z̄1 = ẑ).

9. TRAINING DETAILS

We train D&R with AdamW optimizer with �1=0.9 and
�2=0.99. For Stage 1, the total training iterations are 300K.

Table 3. Quantitative results on SID dataset. “-” means that
the corresponding papers do not report a specific metric value.
“*” marks methods that require the clean RAW image as the
supervision signal in addition to the target sRGB image. (red:
best, blue: 2nd best)

Sony FujiMethods Params PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#
SID [27] 7.7 M 28.96 0.787 0.356 26.66 0.709 0.432
DID [Supp2] 2.5 M 29.16 0.785 0.368 - - -
SGN [Supp3] 19.2 M 29.28 0.790 0.370 27.41 0.720 0.430
LLPackNet [Supp4] 1.2 M 27.83 0.755 0.541 - - -
RRT [Supp5] 0.8 M 28.66 0.790 0.397 26.94 0.712 0.446
EEMEFN [Supp6] 40.7 M 29.60 0.795 0.350 27.38 0.723 0.414
LDC [Supp7] 8.6 M 29.56 0.799 0.359 27.18 0.703 0.446
MCR [Supp8] 15.0 M 29.65 0.797 0.348 - - -
RRENet [Supp9] 15.5 M 29.17 0.792 0.360 27.29 0.720 0.421
DNF* [Supp10] 2.8 M 30.62 0.797 0.343 28.71 0.726 0.391
RAWMamba* [Supp11] 6.2 M 30.76 0.810 0.328 29.02 0.743 0.382
D&R 31.6 M 31.10 0.814 0.261 29.07 0.743 0.346
D&R (Tiny) 17.1 M 30.93 0.811 0.260 29.13 0.744 0.348

The initial learning rate is set as 2⇥ 10�4 and stays the same
for the first 100K iterations. Then it gradually reduced to
1 ⇥ 10�6 with the cosine annealing. For Stage 2, we adopt
the same training settings as in Stage 1. For both stages, the
batch size is set as 8. Moreover, we apply random rotation and
flips for data augmentation. We use PyTorch to implement our
models. The training of each stage of D&R lasts 4 days on an
A100 GPU.

10. EXPERIMENTS ON SID DATASET

SID dataset contains 5094 extremely low-light RAW images
with corresponding normal-light reference sRGB images taken
by two cameras: Sony A7S2 with Bayer sensor and a reso-
lution of 2832 ⇥ 4240, and Fuji X-T2 with X-Trans sensor
and a resolution of 4000 ⇥ 6000. The exposure time of the
low-light image varies from 0.1s to 0.033s, and the reference
images are captured 100 to 300 times longer than the exposure
time of the low-light images. Table 3 shows the quantitative
comparisons between D&R1 and the existing methods. Note
that although D&R does not use the clean RAW image as
the additional supervision signal, our D&R and D&R (Tiny)
still outperforms the previous state-of-the-art methods RAW-
Mamba [Supp11] and DNF [Supp10] by a noticeable margin,
especially on the LPIPS metric which demonstrates the good
perceptual quality. For D&R and D&R (Tiny), we directly
adopt the hyperparameters selected for the ZRR dataset, so
further parameter sweeping may improve the performance of
D&R on the SID dataset.

11. VISUAL RESULTS

We provide visual comparisons with the existing methods
in Fig. 8, Fig. 9, Fig. 10 and Fig. 11. We provide visual
comparisons among our methods and the ablative versions in

1Since the misalignment issue is not obvious on SID, we did not use the
GCM loss (2) and the mask in (1) when training D&R on SID.



Fig. 12, Fig. 13 and Fig. 14. It can be observed that in Fig. 12,
D&R is on par with D&R (GAN); in Fig. 13, D&R yields
more image details than D&R (GAN); in Fig. 14, D&R (GAN)
generates sharper textures than D&R. D&R and D&R (GAN)
consistently outperform the ablative versions.

12. REFERENCES

[1] Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun,
“Learning to see in the dark,” in CVPR, 2018.

[2] Paras Maharjan, Li Li, Zhu Li, Ning Xu, Chongyang
Ma, and Yue Li, “Improving extreme low-light image
denoising via residual learning,” in ICME, 2019.

[3] Shuhang Gu, Yawei Li, Luc Van Gool, and Radu Timofte,
“Self-guided network for fast image denoising,” in ICCV,
2019.

[4] Mohit Lamba, Atul Balaji, and Kaushik Mitra, “Towards
fast and light-weight restoration of dark images,” in
BMVC, 2020.

[5] Mohit Lamba and Kaushik Mitra, “Restoring extremely
dark images in real time,” in CVPR, 2021.

[6] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang,
“EEMEFN: low-light image enhancement via edge-
enhanced multi-exposure fusion network,” in AAAI, 2020.

[7] Ke Xu, Xin Yang, Baocai Yin, and Rynson W. H. Lau,
“Learning to restore low-light images via decomposition-
and-enhancement,” in CVPR, 2020.

[8] Xingbo Dong, Wanyan Xu, Zhihui Miao, Lan Ma, Chao
Zhang, Jiewen Yang, Zhe Jin, Andrew Beng Jin Teoh, and
Jiajun Shen, “Abandoning the bayer-filter to see in the
dark,” in CVPR, 2022.

[9] Haofeng Huang, Wenhan Yang, Yueyu Hu, Jiaying Liu,
and Ling-Yu Duan, “Towards low light enhancement with
RAW images,” TIP, 2022.

[10] Xin Jin, Linghao Han, Zhen Li, Chun-Le Guo, Zhi Chai,
and Chongyi Li, “DNF: decouple and feedback network
for seeing in the dark,” in CVPR, 2023.

[11] Xianmin Chen, Peiliang Huang, Xiaoxu Feng, Ding-
wen Zhang, Longfei Han, and Junwei Han, “Retinex-
rawmamba: Bridging demosaicing and denoising for low-
light RAW image enhancement,” Arxiv, 2024.



D&R AWNet (Dem) AWNet (RAW) MWISP MWISP (GAN)

LiteISP FourierISPGT LiteISP (GAN)PyNet

D&R AWNet (Dem) AWNet (RAW) MWISP MWISP (GAN)

LiteISP FourierISPGT LiteISP (GAN)PyNet

D&R AWNet (Dem) AWNet (RAW) MWISP MWISP (GAN)

LiteISP FourierISPGT LiteISP (GAN)PyNet

D&R AWNet (Dem) AWNet (RAW) MWISP MWISP (GAN)

LiteISP FourierISPGT LiteISP (GAN)PyNet

(a)

(b)

(c)

(d)

Fig. 8. Visual comparisons on ZRR dataset. Please zoom in for better observation.
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Fig. 9. Visual comparisons on ZRR dataset. Please zoom in for better observation.
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Fig. 10. Visual comparisons on ZRR dataset. Please zoom in for better observation.
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Fig. 11. Visual comparisons on ZRR dataset. Please zoom in for better observation.
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Fig. 12. Ablative visual comparisons. Please zoom in for better observation.
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Fig. 13. Ablative visual comparisons. Please zoom in for better observation.
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Fig. 14. Ablative visual comparisons. Please zoom in for better observation.


