
Supplementary Material
A. Attention Rollout Implementation

We provide additional implementation details for our method.
Transformer blocks in ViT may apply multiple attention ma-
trices through parallel heads, as well as residual connections.
In these cases, we represent the attention matrix Al as fol-
lows:
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The attention rollout Ã is given by Eq. (1). In practice,
instead of computing ÃT for Eq. (2) by multiplying matrices
ÃT = (AL × ...×A2 ×A1)

T
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L , we
compute the importance vector s0 recursively, using matrix
by vector multiplications, reducing computations by a factor
of N , as follows:
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{
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l+1sl+1 if l < L

sL if l = L
(7)

B. Additional Implementation Details

Pruning ViTDet. As discussed in previous works [1], token
pruning in dense prediction tasks requires special considera-
tions. To handle token pruning in ViTDet and maintain the
spatial structure of the feature maps, we keep an intermedi-
ate cache with the most updated keys and values features for
all layers. Our pruning then allows to save computations in
all token-wise operations of the ViT and in the query to key
product of the self-attention operation. We also note that in
the windowed attention blocks, in order to allow batch pro-
cessing, we compute the full attention computation as done
in [2]. In addition, for the OD second stage, we maintain the
feature map of the output layer and update after each frame
the unpruned tokens. Note that while this approach requires
some memory overhead, it is still ∼ 1/10 cheaper in memory
compared to [3]. In our experiments we used a threshold of
0.1 on the confidence score of predicted bounding boxes to
define sL. For Figure (2) of the main paper, 672 × 672 reso-
lution, we used K values in the range [64 − 768] , while for
Figure (6), 1024 × 1024 resolution, we used K values in the
range [75− 2200].

Pruning ViViT. The spatial backbone of ViViT FE is fol-
lowed by a small temporal transformer. As in [3], the tem-
poral transformer is fine-tuned on the outputs of the pruned
model in order to account for the change from the original
model. For fine-tuning the temporal model on Kinetics-400
[4] we trained for 10 epochs with learning rate 2e − 6. For
Epic kitchens [5] we traiedn for 1 epoch with a learning rate
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Fig. 6: Video object detection on ILSVRC 2015 ImageNet
VID at 1024× 1024 resolution.

Table 3: Effect of tracking window size r on ImageNet VID .

Window Size GFLOPs mAP50 (%)
1/1 Sampling 1/4 Sampling

r = 0 46.44 81.7 77.2
r = 1 46.45 82.1 79.3
r = 2 46.47 82.1 79.5
r = 3 46.49 82.0 79.2

of 1e− 5. Importantly, pruning is applied only on the spatial
backbone, for which no fine-tuning is applied.

Runtime Measurements. Reported running times of VitDet
are for the transformer backbone with the overheads related to
rollout computation. For ViViT, runtime measurements rep-
resent the entire model, including the temporal transformer
and rollout computation.

C. Additional Results on Video Object Detection

We follow common evaluation protocols on ImageNet VID
and rescale input frames to either 1024× 1024 or 672× 672.
We show results for 672×672 in Figure (2) in the manuscript,
as more related works have been evaluated on this resolution.
We show results for 1024 × 1024 in Figure (6). Our method
reduces computation by 67% while improving the accuracy
of the original ViTDet model. We provide additional qualita-
tive results in Figure (7), visualizing st0 for both the original
ViTDet and our method, as well as the pruned tokens.

D. Tracking Window Size

We provide an ablation study on the window size used for to-
ken tracking. Table 3 shows that r = 1 yields best results for
the video clips in ImageNet VID. Larger r values should be
used when increased motion is expected, as in our simulated
1/4 sampling. We note that tracking within larger windows is
subject to noise and might degrade accuracy.

E. Temporal Token Tracking

Our method propagates importance scores between succes-
sive frames as defined in Eq (4). Intuitively, it can be re-



garded as a template matching in the token space. While
more advanced tracking methods can be used, our motivation
lies in applying them on tokens rather than on frame pixels,
due to the following traits; first, as we want to relate tokens
between successive frames, we seek to avoid additional prop-
agation between tokens and pixels which might impact such
relation. Second, tracking methods may require less compu-
tations when applied on tokens rather than pixels. We suggest
that input tokens, derived using a linear projection on non-
overlapping image patches, retain locality such that transla-
tion in the pixel space would be similarly depicted in the to-
ken space. In addition, the aforementioned projection in ViTs
used in this work is R16×16×3 → R768, potentially preserving
the amount of information. We note, however, that the above
does not hold for subsequent token transformations. In par-
ticular, attention layers exchange information between tokens
and hence do not preserve locality. Furthermore, tokens in
successive frames undergo different transformations, making
their latent representations incommensurate.

F. Token Pruning at Intermediate Layers

Our method estimates the importance of input tokens at frame
t, zt0, with respect to predictions in frame t−1. At subsequent
layers, attention rollout can also be used to propagate impor-
tance scores from st0 to stl , 1 < l < L. Following Eq (2), we
get:

st0 = AT
(l,1)s

t
l
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(l,1))

−1st0
(8)

With Eq. (8), token pruning can be applied gradually
across transformer blocks. In our experiments, we observed
marginal improvement in complexity-accuracy tradeoffs,
along with a runtime increase due to matrix inversion. We
note that while such pruning in intermediate layers enables
gradual loss of information, pruning at stl is as informed as at
st0, as they both stem from the importance of st−1

L .
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Fig. 7: Additional qualitative results on ImageNet VID. The four rows for each video clip show input frames xt, st0 of the
original model, st0 of our method and pruned tokens by our method, respectively.
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