
A. SUPPLEMENTARY MATERIAL

A.1. Attention Rollout Implementation.

We provide additional implementation details for our method.
Transformer blocks in ViT may apply multiple attention ma-
trices through parallel heads, as well as residual connections.
In these cases, we represent the attention matrix Al as fol-
lows:
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The attention rollout Ã is given by Eq. (??). In prac-
tice, instead of computing Ã and follow Eq. (??), as ÃT =
(AL ×AL−1 × ...×A1)
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compute the importance vector s0 recursively as follows, re-
ducing computations by a factor of N :
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A.2. Additional Implementation Details.

(1) OD (2) action recognition (temporal network training?)
(3)...

A.3. Tracking Window Size.

Results of an ablation study on the size of the window used
for token tracking are given in Table 1. Our experiments in-
dicate that token tracking with a window size r = 1 improves
accuracy compared to the no-tracking baseline (r = 0). This
becomes more apparent with larger motion in the videos, as
shown in the results for 1/4 Sampling. We also note that fur-
ther increase of the window size does not lead to improve-
ments.

Table 1: Effect of tracking window size r on ImageNet VID .

Window Size GFLOPs mAP50 (%)
1/1 Sampling 1/4 Sampling

r = 0 46.77 82.0 79.3
r = 1 46.78 82.1 80.0
r = 2 46.80 82.0 79.9
r = 3 46.82 82.0 79.6

A.4. Additional Qualitative Results.

We provide additional qualitative results for ImageNet VID
in Figure XXX, EPIC-Kitchens in Figure XXX and Kinetics-
400 in Figure XXX.

A.5. Temporal Token Tracking.

Our method propagates importance scores between succes-
sive frames as defined in Eq XXX. Intuitively, it can be re-
garded as a template matching in the token space. While
more advanced tracking methods can be used, our motivation
lies in applying them on tokens rather than on frame pixels,
due to the following traits; first, as we want to relate tokens
between successive frames, we seek to avoid additional prop-
agation between tokens and pixels which might impact such
relation. Second, tracking methods may require less compu-
tations when applied on tokens rather than pixels. We suggest
that input tokens, derived using a linear projection on non-
overlapping image patches, retain locality such that transla-
tion in the pixel space would be similarly depicted in the to-
ken space. In addition, the aforementioned projection in ViTs
used in this work is R16×16×3 → R768, potentially preserving
the amount of information. We note, however, that the above
does not hold for subsequent token transformations. In par-
ticular, attention layers exchange information between tokens
and hence do not preserve locality. Furthermore, tokens in
successive frames undergo different transformations, making
their latent representations incommensurate.

A.6. Token Pruning at Intermediate Layers.

Our method estimates the importance of input tokens at frame
t, zt0, with respect to predictions in frame t−1. At subsequent
layers, attention rollout can also be used to propagate impor-
tance scores from st0 to stl , 1 < l < L. Following Eq (??), we
get:
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With Eq. (3), token pruning can be applied gradually
across transformer blocks. In our experiments, we observed
marginal improvement in complexity-accuracy tradeoffs,
along with a runtime increase due to matrix inversion. We
note that while such pruning in intermediate layers enables
gradual loss of information, pruning at stl is as informed as at
st0, as they both stem from the importance of st−1

L .


