
SUPPLEMENTARY MATERIAL FOR “A UNIFIED FRAMEWORK FOR DYNAMIC POINT
CLOUD COMPRESSION”

1. INTRODUCTION

In this supplementary material, we provide more details about
our architecture and the training strategy used for training the
proposed unified model. In terms of experiments, we include
more details about the training and test datasets, as well as
more complete results for application to attribute coding.

2. DETAILS OF THE ARCHITECTURE

Below we provide additional details of the architecture omit-
ted in the main text due to space constraints.

2.1. Key difference from prior-arts

We start by highlighting some crucial differences from the
existing related approaches. First, unlike most existing Octree
Coding approaches that use only already available ancestral
information as context for occupancy probability estimation,
we perform feature-assisted Octree Coding where a feature
coded into the bitstream is used for context modeling. Our
feature is constructed from the current level to be encoded, in
addition to the already available ancestral information, and is
thus comparatively richer in information. Moreover, with our
design the dependency between the levels in terms of feature
extraction is broken and replaced with dependency between
levels in terms of coding: as we are using the coded features
and extracting ancestral features from already decoded parent
level.

Secondly, unlike SparsePCGC [1] which also performs
Feature-assisted Octree Coding, our parameters for the CFC
module are completely shared between the Octree Coding and
Feature Coding for all levels.

Thirdly, unlike ALL existing Feature Coding approaches,
our CFC module is hierarchical in nature as it utilizes the
lossless/lossy reconstruction and the intermediate quantized
feature from the previous level, instead of being completely
independent for each level e.g., like in SparsePCGC [1].

2.2. Feature Interpolation Module

The goal of the Feature Interpolation (FI) module is to align
the coordinates of the input feature map Fi with the lossy
occupancy reconstruction Ôi−1 from the previous level, as

Fig. 1. The overall architecture of the main branch in our
proposed method with point-based Feature Coding.

also shown in Fig. 4 in the main text. This FI module can be
skipped in case of lossless reconstruction from the previous
level. To achieve this alignment of coordinates, the FI module
first utilizes a sparse 3D “target convolution” for which the
locations of the output feature map can be specified as the
lossy occupancy reconstruction Ôi−1 from the parent level.
Afterwards, the FI module performs feature aggregation via a
few sparse 3D convolution layers to update the output feature
map of the sparse 3D “target convolution”.

2.3. Point-based Architecture

The architecture design of the Feature Analysis (FA) and Fea-
ture Synthesis (FS) modules for Conditional Feature Coding
(CFC) is motivated by the point cloud content being coded.
For dense surface point clouds representing objects/scenes
with uniform distribution of the points on the surface, a voxel-
based architecture utilizing sparse 3D convolutions is used.
However, for dense point clouds with non-uniform distribu-
tion of points and for sparse point clouds like those acquired
from LiDAR, point-based architecture is more appropriate as
it can have a larger receptive field without increasing the num-
ber of parameters to be learned, but at the cost of higher com-
putational complexity. Moreover, with point-based architec-
tures, hierarchical Feature Coding remains an open problem.
We defer more details of this discussion to the Supplemen-
tary. Octree Coding for all content types is based on voxel-
based architecture as lossless Octree Coding is deployed for



Fig. 2. Proposed conditional feature coding (CFC) module
with point-based feature analysis and synthesis modules.

Fig. 3. Proposed Feature-based Point Reconstruction (FRP)
module.

lower levels of the Octree where point distribution is mostly
uniform, as observed in existing works [2].

Our proposed UniFHiD with a point-based architecture
for Conditional Feature Coding is shown in Fig. 1. One can
see that compared to Fig. 1 in the main text, the Octree Cod-
ing pipeline stays the same. However, the point-based Feature
Coding pipeline is now performed in one-shot instead of hi-
erarchical Feature Coding. The input to the point-based
CFC module is directly the input point cloud occupancy
On, instead of Oj at an intermediate j-th level. Moreover,
the Feature-based Point Reconstruction FRP module shown
in Fig. 3 also has a different architecture than the earlier
Feature-based Reconstruction (FR) module.

The design of our proposed point-based CFC module is
shown in Fig. 2, where the architecture is very similar to the
convolution-based CFC from Fig. 3 in the main text. The dif-
ference is the Point Feature Analysis (PFA) and Point Feature
Synthesis (PFS) modules, which are explained herein.

The PFA module is like the well-known PointNet++ [3]

Fig. 4. The architecture of our inter coding branch.

but with a key difference. To avoid the computational com-
plexity incurred by the neighborhood search, in our proposal,
the neighborhood is constructed around each ancestor node at
the last Octree Coding level i by only considering its children
nodes at the leaf level. Since it is obvious which lead nodes
belong to which ancestor at the i-th Octree level there is no
need for a search. With the neighborhoods available, a Point-
Net [4] with shared parameters digests each neighborhood to
produce a feature for each neighborhood, which along with
the coordinates of the ancestor at the i-th Octree level com-
poses the feature map Fn.

On the decoder side, the PFS module takes F̂n as input
and uses an MLP module to increase the feature channel di-
mension from f to kf ′, where k is the number of offsets to be
predicted within each neighborhood and f ′ is the new feature
channel dimension for each offset to be predicted.

Finally, the FRP module from Fig. 3 consist of two sub-
modules: k-offset estimator and offset-to-point. The k-offset
estimator module, implemented via MLPs, takes the feature
map Fn

S as input and produces k offsets for each feature vec-
tor. These k offsets per feature vector are then ingested by
the offset-to-point module along with the reconstructed occu-
pancy from the last octree level Oi, to produce the final re-
constructed points Ôn by adding the offsets to the associated
point locations from the last octree level.

2.4. Dynamic Coding: Inter Architecture

As pointed out in the main text, the inter coding branch shares
a lot of similarities in terms of architecture design with the
CFC pipeline. Specifically, the ancestral feature map Fi

anc is
replaced with a reference frame feature map Fi

ref at the same
Octree level obtained in the same way as feature map Fi is



Fig. 5. The architecture of our motion estimation module

obtained using the FA module. The rest of the pipeline for
the encoding/decoding of the inter feature remains similar to
CFC as shown in Fig. 4. Just as before, having an architecture
similar to CFC makes the inter coding branch be hierarchical
in nature as well.

The motion estimation (ME) and predictor generator (PG)
modules have architectures that are very similar to the condi-
tional encoder (CE) and conditional decoder (CD) modules in
the main coding branch, respectively. Since the ME module
is on the encoder side it requires FI module for coordinate
alignment just like the CE module. Moreover, an additional
“Pruning” module is needed in ME and PG modules (in con-
trast to CE and CD modules) to align the coordinates of the
feature aggregation to Ôi−1.

2.5. Style Control

Existing learning-based feature coding methods such as [5, 2,
1] lack proper rate control mechanisms. To achieve different
bitrates during inferences, these methods need to reload a dif-
ferent neural network model optimized for a particular rate-
distortion trade-off. However, this approach lacks flexibility:
it requires the compression system to maintain a set of trained
models, and it is unable to achieve fine-grain/continuous rate
control. To overcome this issue, a variable-rate mechanism is
needed. Additionally, to have a single unified model for cod-
ing in both intra and inter modes, a seamless switching be-
tween the intra-only coding and inter-coding is also desired.
Both of these goals can be addressed via our proposed novel
Style Control (SC) module, as shown in Fig. 6.

This SC module can be augmented to (the output of) each
module in the network, taking a feature Fi as input and trans-
forming its “style” in light of the control parameters: rate-
distortion trade-off parameter λ and an inter-coding flag I.
The main goal of the SC module is to transform the input fea-
tures to the given control parameters through learnable mod-
ules but performing simple operations like scaling and shift-
ing the mean of features. The SC module further consists of
two sub-modules, also depicted in Fig. 6. The Style Encod-
ing (SE) module takes the input control parameters (λ, and I)
and embeds them to a higher dimensional space using an em-
bedding, e.g., sinusoidal embedding. Afterwards, the embed-
ded vector is transformed into a style feature fstyle through an
MLP module. Next, the style feature fstyle goes to the Adap-

Fig. 6. Sub-modules of the proposed Style Control with Style
Encoding (top) and Adaptive Affine (bottom).

tive Affine (AA) module which is tasked with updating the
input feature Fi to a new feature Fi

new. The AA module first
normalizes the input feature to get a normalized input feature
Fi

nm followed by an Affine module which scales and shifts
the mean according to the parameters σ and m (respectively)
predicted from the style feature fstyle through another MLP
module. With this architecture design, while having only one
set of model parameters, the proposed model can achieve a
fine-grain rate control by varying λ in a pre-defined range or
switching the mode of operation (intra or inter mode).

2.6. Levelwise Stochastic Training

Since our proposed model is unified for both Octree Cod-
ing and Feature Coding, a special mechanism is applied dur-
ing training. As pointed out in Sec. 2 in the main text, our
method breaks the dependency between levels in terms of fea-
ture extraction (while maintaining the dependency in terms of
coding). A motivation for this design is to enable the train-
ing to be performed in a level-wise manner rather than fully
end-to-end, so as to reduce computational cost. Additionally,
since our model is unified between Octree Coding and Fea-
ture Coding in terms of network parameters (majority of the
parameters) and can seamlessly switch between inter and in-
tra modes with the proposed Style Control technique, we can
randomly switch between four coding configurations during
training: intra Octree, intra Feature, inter Octree, and inter
Feature. The ratio of our network getting trained in either
configuration can be controlled by user-specified parameters.

To avoid our network getting stuck in local minimas that
lead to poor inference performance, we employ a two-stage
training procedure with a special schedule for rate-distortion
trade-off parameter λ. In the first stage, we use a fixed low
value λ which incurs a high bitrate during training but can
achieve good reconstruction performance, i.e., low distortion.
This first stage lasts a few epochs, after which we use a normal
schedule for λ where we randomly pick the value for λ within
a specified range.

For the training of Octree coding the training loss consists
of a binary cross-entropy loss (between the predicted prob-



Table 1. Training datasets used.
Class Train (Sequence) Name Fr. Prc.
DS Head 00039 vox12 1 12

Frog 00067 vox12 1 12
Egyptian mask vox12 1 12
ULB Unicorn vox13 1 13

DS RWTT Train Set 406 Float
DD Queen 250 10

8i VFB – Loot 300 10
8i VFB – Red and Black 300 10
8i VFB – Soldier 300 10
8i VFB – Long dress 300 10

SD KITTI (00-10) 23201 18

Table 2. Test datasets used.
Class Test (Sequence) Name Fr. Prc.
DS Facade 00009 vox12 1 12

House without roof 00057 vox12 1 12
Arco Valentino Dense vox12 1 12
Statue Klimt vox12 1 12
Shiva 00035 vox12 1 12

DS RWTT vishnu 156 vox10 1 10
RWTT foxstatue 211 vox10 1 10
RWTT tomb 059 vox10 1 10

DD Exercise vox10 300 10
Model vox10 300 10
Dancer vox11 300 11
Basketball player vox11 300 11
Thaidancer viewdep vox12 300 12

SD KITTI (11-21) 3300 18

abilities and the ground truth occupancies) used for learn-
ing the occupancy probabilities and the rate loss of the fea-
tures which is the bitrate estimated by the entropy bottleneck
layer. The Feature Coding is trained using a rate distortion
loss L = LD + λLR, where the rate is again the bitrate of
the feature estimated by the entropy bottleneck layer, and the
distortion is computed using the binary cross-entropy loss as
the Feature Coding produces a lossy utilizing the learned oc-
cupancy probabilities.

3. DATASET DETAILS

The datasets for our experimental evaluation consist of three
main categories: Dense Static, Dense Dynamic and Sparse
Dynamic, and follows the experimental guidelines outlined
in the MPEG AI-PCC CfP [6]. The training set in the Dense
Static category consists of a subset of the static point clouds
from MPEG G-PCC CTC and some subset of static 3D tex-
tured models in the Real World Textured Things (RWTT)
dataset [7] with permittive licenses. The corresponding test
sets consist of another subset of the static point clouds from

MPEG G-PCC CTC and three static 3D textured models in
the RWTT dataset [6].

In the Dense Dynamic category, the training set is com-
posed of 8iVFB dynamic point cloud sequences and the
Queen sequence, while the test set consists of dynamic point
cloud sequences from the V-PCC CTC. Finally, the training
and testing data for Sparse Dynamic are the training and test-
ing splits from the well-known spinning-LiDAR KITTI [8]
dataset. Some additional details about each dataset category
are provided in Supplementary. We provide some more de-
tails in Tab. 1 and Tab. 2 about the training and test datasets,
respectively. These details include information like Class,
number of frames (Fr.), and geometry precision (Prc.). For
RWTT train set, 406 meshes among 568 were selected before
processing them to point cloud training set. These mesh ver-
tices are originally available in floating-point values, hence,
quantization was performed on the vertices before point-
sampling on top of the meshes. For KITTI train set we use
sequences 00 to 10 with all their frames, while for the KITTI
test set we use sequences 11 to 21 with the first 300 frames
from each test sequence.

4. APPLICATION TO ATTRIBUTE CODING: FULL
RESULTS

As mentioned in the main text, we paired our proposed ge-
ometry coding proposal with a traditional attribute coding
named RAHT (Region Adaptive Hierarchical Transform)
[10] to make a full Hybrid coding framework for point cloud
compression (AI-based geometry coding + non-AI attribute
coding). The full results of this hybrid framework are com-
pared with existing approaches, as shown in Tab. 3. The tra-
ditional approaches for comparison are GeSTM-Octree and
GeSTM-TriSoup, whereas the learning-based approaches are
JPEG AI PCC, YOGA, and Unicorn. Our proposed approach
is the only hybrid approach with learning-based geometry
coding and traditional attribute coding. Additionally, in con-
trast to all other methods, JPEG AI PCC is a projection-based
approach where it first projects the 3D point cloud geometry
and attributes to 2D images followed by JPEG AI to compress
the said 2D images. It should also be noted that the attribute
compression part of GeSTM is also based on RAHT like our
hybrid approach.

We can observe considerable gains across the board for
all types of point clouds with our proposed Hybrid UniFHiD.
Compared to GeSTM, this showcases the importance of bet-
ter geometry coding that our learning-based method can pro-
vide. On the other hand, we can see considerable gains over
all fully learning-based approaches which highlights the cur-
rent performance gap between traditional and learning-based
attribute compression. The learning-based attribute compres-
sion methods still have room to improve to catch up to and
outperform the traditional attribute compression approaches
for 3D point clouds.



Table 3. Comparison of our Hybrid UniFHiD method with other non-learning and learning based solutions, based on gains
over G-PCC (for KITTI) and V-PCC (for Dense).

Dataset Dense Static Dense Dynamic KITTI
Metric Y,Cb,Cr Y,Cb,Cr R

JPEG AI PCC +31.49%,+36.96%,+46.68% — —
GeSTM-Octree [9] +63.79%,+59.21%,+46.55% +80.78%,+15.89%,+11.41% -0.90%

GeSTM-TriSoup [9] -16.58%,-31.81%,-48.66% -4.87%,-52.89%,-56.53% —
YOGA +15.78%,-36.24%,-63.03% — —
Unicorn -25.30%,-40.23%,-40.80% +6.96%,-19.71%,-25.27% -59.22%

Hybrid UniFHiD -25.7%,-36.0%,-48.8% -22.8%,-54.6%,-56.5% -77.5%

5. REFERENCES

[1] Jianqiang Wang, Dandan Ding, Zhu Li, Xiaoxing Feng,
Chuntong Cao, and Zhan Ma, “Sparse tensor-based
multiscale representation for point cloud geometry com-
pression,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 45, no. 7, pp. 9055–9071,
2022.

[2] Jiahao Pang, Kevin Bui, and Dong Tian, “Pivot-
net: Heterogeneous point-voxel-tree-based framework
for point cloud compression,” in 2024 International
Conference on 3D Vision (3DV). IEEE, 2024, pp. 1270–
1279.

[3] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas, “Pointnet++: Deep hierarchical feature learning
on point sets in a metric space,” Advances in neural
information processing systems, vol. 30, 2017.

[4] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas, “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2017, pp. 652–660.

[5] Jiahao Pang, Muhammad Asad Lodhi, and Dong Tian,
“Grasp-net: Geometric residual analysis and synthesis
for point cloud compression,” in Proceedings of the
1st International Workshop on Advances in Point Cloud
Compression, Processing and Analysis, 2022, pp. 11–
19.

[6] MPEG Technical Requirements (WG 02), “Updated
call for proposals for ai-based point cloud coding,” July,
2024, Accessed on Nov 14, 2024.

[7] Andrea Maggiordomo, Federico Ponchio, Paolo
Cignoni, and Marco Tarini, “Real-world textured
things: A repository of textured models generated with
modern photo-reconstruction tools,” Computer Aided
Geometric Design, vol. 83, pp. 101943, 2020.

[8] Andreas Geiger, Philip Lenz, Christoph Stiller, and
Raquel Urtasun, “Vision meets robotics: The kitti

dataset,” The International Journal of Robotics Re-
search, vol. 32, no. 11, pp. 1231–1237, 2013.

[9] MPEG Coding of 3D Graphics and Haptics (WG 07),
“An mpeg (ge)ometry based point cloud compression
test model for (s)olid content,” February, 2023, Ac-
cessed on Nov 14, 2024.

[10] Gustavo Sandri, Franck Thudor, Maja Krivokuća, and
Bertrand Chupeau, “A motion-compensated inter-
frame attribute coding scheme for dynamic dense point
clouds,” in 2023 IEEE 25th International Workshop
on Multimedia Signal Processing (MMSP). IEEE, 2023,
pp. 1–6.


