
LEARNING FROM PU DATA USING DISENTANGLED REPRESENTATIONS
[SUPPLEMENTAL MATERIAL]

1. THEOREM 1

In this section we wish to justify the informal theorem. We investigate the minimization function mentioned in Equation 5 in
the original manuscript. We note that this loss can be rewritten in the form

L̂(θ) := ∥f(θ)− y∥22

where

f(θ) :=

1√
np

v(xp
1; θ)

1√
np

v(xp
2; θ)

...
1√
np

v(xp
np
; θ)

√
α√

nup
v(xup

1 ; θ)
√
α√

nup
v(xup

2 ; θ)

...√
α√

nup
v(xup

nup
; θ)

√
1−α√
nun

v(xun
1 ; θ)

√
1−α√
nun

v(xun
2 ; θ)

...√
1−α√
nun

v(xun
nun

; θ)

and y :=

1√
np

1np ⊗ µP
√
α√

nup
1nup

⊗ µU
√
1−α√
nun

1nun ⊗ µU

where ⊗ denotes the Kronecker product. With this nonlinear least squares formulation one can use well established Neural
Tangent Kernel (NTK) theory to show that the for sufficiently wide networks and sufficiently large scale of initialization the
iterative updates and the output of the network remain close to that of the iterative updates on a linear problem of the form

∥Jθ − y∥22 (1)

where J denotes the Jacobian of the mapping f at random initialization. This is a direction consequence of the argument in
Section 5.3 of [1] combined with NTK eigenvalue characterizations for deep convolutional networks in [2]. This argument is
by now standard, and thus we omit unnecessary repetition given the informal/qualitative statement of our theorem and focus
on the linearized form in (1). Without loss of generality we can focus on the case where µP and µU are scalar valued as the
argument in the general case follows the exact same proof and can be thought of as repeating the scalar argument across the
coordinates of µP /µU . The loss in this case can also be alternatively written in the form

L̃(θ) = min
θ

1

np
∥Jpθ − µP1∥2 +

α

nup
∥Jupθ − µU1∥2 +

1− α

nun
∥Jupθ − µun1∥2 (2)

Where Jp ∈ Rnp×d is the Jacobian matrix corresponding to the positive labeled samples, similarly, the matrices Jup ∈ Rnup×d

and Jun ∈ Rnun×d correspond to the unlabeled positive and negative samples, respectively, and θ ∈ Rd×1 is the linear model,
and 1 is the all 1 vector.

For convenience, the three loss terms can be combined into a tall concatenated matrix as follows:

L̃(θ) =

∥∥∥∥∥

Jp√
np

θ − µP√
np

1
√
α√

nup
Jupθ −

√
αµU√
nup

1
√
1−α√
nun

Junθ −
√
1−αµU√
nun

1

∥∥∥∥∥
2

(3)

Thus in this case J corresponds to

Jp√
np√

α√
nup

Jup
√
1−α√
nun

Jun

 and y to

µP√
np

1
√
αµU√
nup

1
√
1−αµU√
nun

1

Applying gradient descent to minimize the loss function, the update rule for θ is :

θt+1 = θt − ηJT (Jθt − y)

Where η is the learning rate. Defining the residual vector rt := Jθt − y after t iterations we have

rt = Jθt − y = Jθt−1 − y − ηJJT (Jθt−1 − y)

= (I − ηJJT)(Jθt−1 − y)

= (I − ηJJT)rt−1

=
(
I − ηJJT

)t
r0 (4)

With sufficiently small or asymmetric initialization ([1]) we can ensure θ0 ≈ 0 which implies that the initial residual is r0 =
Jθ0 − y ≈ −y, hence,

Jθt = y −
(
I − ηJJT

)t
y (5)

Now consider the vector w =

√
α1√
np

−1√
nup

0

. The critical observation is that this vector is approximately in the null space of JT .

To see this note that

JTw =

(
Jp√
np

)T √
α1

√
np

−
(√

α
√
nup

Jup

)T
1

√
nup

=
√
α

(
JT
p 1

np
−

JT
up1

nup

)
(6)

JT
p 1

np
and

JT
up1

nup
are simply the empirical average of the NTK features over the labeled and unlabeled positive pairs. Since these

two distributions are identical they converge to the same population mean. Let us denote this common mean by ϕ. Thus,

∥JTw∥ =
√
α

∥∥∥∥∥JT
p 1

np
− ϕ−

(
JT
up1

nup
− ϕ

)∥∥∥∥∥ ≤
√
α

∥∥∥∥∥JT
p 1

np
− ϕ

∥∥∥∥∥+√
α

∥∥∥∥∥JT
up1

nup
− ϕ

∥∥∥∥∥ ≤
√
α
√
δ

where the latter holds with high probability do to the concentration of the empirical mean around the true mean under mild
technical assumptions about the NTK kernel and data distributions.Indeed, if the features are sub-Gaussian (e.g. bounded) one
can show that

√
δ scales with max

(
1/
√
np, 1/sqrtnup

)
and can thus be made arbitrarily small for a sufficiently large data set.

To continue define the unit norm vector ŵ = w√
1+α

and note that

ŵTJJT ŵ ≤ α

α+ 1
δ ≤ δ.

Now, we can decompose y into it’s orthogonal projections onto ŵ where ŵ = w√
1+α

: y = y∥ + y⊥ = ŵŵT y+
(
I − ŵŵT

)
y.

To continue note that

y⊥ :=
(
I − ŵŵT

)
y = y −w

wT y

1 + α

= y −w

√
αµP −

√
αµU

1 + α

= y −

α

1+α
1√
np

(µP − µU)

−
√
α

1+α
1√
nup

(µP − µU)

0

=

µP√
np

1
√
αµU√
nup

1
√
1−αµU√
nun

1

−

α

1+α
1√
np

(µP − µU)

−
√
α

1+α
1√
nup

(µP − µU)

0

=

1√
np

[(
1− α

1+α

)
µP + µU

1+α

]
1

√
α√

nup

[
µP +

(
1− 1

1+α

)
µU

]
1

√
1−αµU√
nun

1

=

1√
np

µP+αµU

1+α 1
√
α√

nup

µP+αµU

1+α 1
√
1−αµU√
nun

1

Furthermore,

JT y⊥ =
1

np

µP + αµU

1 + α
JT
p 1+

α

nup

µP + αµU

1 + α
JT
up1+

1− α

nun
µUJ

T
un1

Now using concentration of the rows of different J the above is approximately equal to the following with high probability

JT y⊥ ≈ (µP + αµU)ϕ+ (1− α)µU ϕ̃

where ϕ and ϕ̃ are the average of the NTK features in the positive and unlabeled negative data. Thus, for v̂ = y⊥/∥y⊥∥2 we
have

vTJJT v =
1

∥y⊥∥22
yT⊥JJ

T y⊥ ≥ (1 + α)
∥ (µP + αµU)ϕ+ (1− α)µU ϕ̃∥22

µ2
P + µ2

U + 2αµPµU
:= ∆

Thus in the direction of ŵ the NTK kernel JJT is small where as in the direction v̂ it is large. Intuitively, this implies that
(I − ηJJT)ty⊥ is small for a sufficiently large t where as (I − ηJJT)ty∥ ≈ y∥. Indeed, we can make this intuition precise and
prove that

∥(I − ηJJT)ty⊥∥2 ≤ (1− η∆)
t ∥y⊥∥2 and ∥y∥ − (I − ηJJT)ty∥∥2 ≤

(
1− (1− ηδ)t

)
∥y∥∥2

Since δ can be made arbitrarily small for a sufficiently large data set we have δ << ∆ therefore for a broad range of values of
η one can find a stopping time T where both terms are very small. For instance for η = 1

2∆ picking any stopping time obeying

log

(
2

ϵ

)
≤ T ≤

log
(
1− ϵ

2

)
log
(
1− δ

∆

)
we have

∥(I − ηJJT)T y⊥∥2 ≤ ϵ

2
∥y⊥∥2 and ∥y∥ − (I − ηJJT)T y∥∥2 ≤ ϵ

2
∥y∥∥2

using the above identities we conclude that

∥JθT − y⊥∥ = ∥y∥ −
(
I − ηJJT

)T
y∥ −

(
I − ηJJT

)T
y⊥∥ ≤ ϵ∥y∥

This formally proves that for an appropriate stopping time T

JθT ≈ y⊥ (7)

Pulling back the definition of J :

JθT =

Jp√
np

θT
√
α√

nup
JupθT

√
1−α√
nun

JunθT

 =

1√
np

µP+αµU

1+α 1
√
α√

nup

µP+αµU

1+α 1
√
1−αµU√
nun

1

 (8)

Resulting in:

JpθT = JupθT ≈ µP + αµU

1 + α
1, and Junθt ≈ µU1

2. ILLUSTRATING THE VALUE OF THE REPRESENTATION LEARNING METHOD

Here, we show in Fig. 1 a simple comparison between the t-SNE visualization of the unlabeled data in the representation
space in our proposed method and in the representation space of a classical VQ-VAE [3]. The representation of the unlabeled
data in the VQ-VAE shows the entanglement of the positive and negative samples, which makes it challenging to learn a binary
classifier in the PU setting. In contrast, the figure highlights the effectiveness of the proposed method in learning a representation
space in which the positive and negative samples are clearly concentrated in two clusters, making the problem much closer to
the simple 1-dimensional scenario shown in Fig. 1 in the original manuscript. Furthermore, the figure also underscores the
limitation of dimensionality reduction methods in achieving the separability attained by the proposed method.

Fig. 1: The t-SNE visualization of the learned data representation (for the AFHQ dataset) in the proposed method compared
to the data representation learned in a classical VQ-VAE showing how the proposed learned representation disentangles the
positive and negative samples such that they can be easily told apart using simple clustering algorithms.

3. EXPERIMENTS

3.1. Stopping Criteria for Baseline Methods

We compare our method to five state-of-the-art PU learning methods that have shown good performance on image datasets.
The first method is Observer-GAN [4], which uses a GAN-based setup to learn a binary classifier. The second is TEDn[5],
which uses an alternating procedure between the problem of estimating the positive prior α, and the problem of learning a
binary classifier. The third method, D-GAN [6], also uses a GAN-based setup to learn the distribution of negative samples and
then learn a binary classifier. Finally, we compare against Robust-PU [7] and Dist-PU [8], which also show state-of-the-art
performance on PU data.

Since the first two methods claim convergence to the correct solution, and there is no clear way to stop training at an early
stage, we follow the same method of training each of the methods for 1000 epochs. We then look at the average performance
of the last 50 and 100 epochs. For the third method, no specific criteria were presented for terminating the training of the
second-stage classifier. Therefore, we train the classifier and apply early stopping based on a fully labeled validation set to
prevent the second-stage classifier from overfitting.

For our proposed method, we look at the Euclidean distance between the two clusters identified by the K-means algorithm
(applied to the training set), and stop training when this distance starts decreasing. Figure 2 shows that even though the accuracy
on the validation set does not change dramatically after it reaches about 20 epochs, the point at which the distance between the
two clusters found using the training set is largest also corresponds to the point of highest accuracy for the validation data. This
behavior was evident in all experiments.

Fig. 2: Left: Accuracy curve as a function of the number of epochs on the test data. Right: The Euclidean distance between the
centers of the two clusters identified by the K-means algorithm on the unlabeled (training) data.

4. ABLATION STUDIES

4.1. Adaptations of The Proposed Method

We empirically study various adaptations of the proposed method to evaluate the importance of each component. Initially, we
study the implementation of the idea presented in section 3.2 in the original manuscript, where we project the input data to two
constant vectors. Here one of the vectors is µU = 0, where 0 is the all-zero vector, and the other vector is µP = a where a is a
scalar that takes value from the set {1, 5, 50, 100} (we report the mean and standard deviation of the accuracy of all trials), and
a is the vector of all a’s. This experiment is referred to as ”Constant encodings” in Table 1.
Next, we implement the idea while considering two normal distributions U ∼ N (0, I) and P ∼ N (a, I) instead of µU , and µP

respectively, where N (a, I) is the normal distribution that has a mean vector of all a’s, and identity covariance matrix. Again,
we let a to take values from the set {1, 5, 50, 100} (we report the mean and standard deviation of accuracy of all trials). In this
case, we penalize the KL divergence between the encoded vectors and the two normal distributions U and P . This variant is
named ”distributional encodings” in Table 1.
Thirdly, we assess the impact of the number of codebook vectors. We implement the proposed method using the minimal
feasible number of codebook vectors, which is two vectors. The resulting accuracy is presented in Table 1 and referred to as
”VQ (2 updated C.B. vectors).
Fourth, we explore the significance of updating the codebook vectors during the vector quantization of the representation space.
We replicated our previous experiments but this time without any updates to the codebook vectors. In this case, because the
idea of the method relies on having two distinct magnitudes of vectors in the representation space, we initialize the codebook
vectors to have two modes, such that half of the codebook vectors are initialized from a normal distribution N1(0, I)), and the
other half is initialized from a normal distribution N2(a, I)). Here a took values from the set {1, 5, 50, 100}. We refer to this
method in Table 1 as ”VQ (No updates)”.
Lastly, we revisited the prior configuration but with a restriction to just two codebook vectors. The objective was to project both
positive and negative samples onto one of these two vectors. This technique is denoted as ”VQ (2 fixed C.B. vectors)” in Table
1.

The conducted experiments and ablation studies show the efficiency of learning a new representation from PU data and
the significance introduced by the quantization of the representation space. Although the idea of learning a new representation
space stems from the simple mathematical steps shown in section 3.2 in the original manuscript, the conducted ablation studies
show that quantization helps achieve a clear separation between the positive and negative data in the unlabeled set. The ablation

Method Accuracy% (±std)

Constant Encodings 73(±4)
Distributional Encodings 69(±7)
VQ (2 updated C.B. vectors) 97(±0.5)

Codebook Vectors Initialization
N (0, I), N (1, I) N (0, I), N (5, I) N (0, I), N (50, I) N (0, I), N (100, I)

VQ (No updates) 78.9(±4.3) 95.1(±0.7) 96.7(±1) 88.9(±3.2)
VQ (2 fixed C.B. vectors) 76.3(±3) 97.3(±0.3) 96.2(±0.8) 91.4(±2.7)

Table 1: Ablation studies conducted on AFHQ dataset, illustrating the impact of different initializations of codebook vectors
on the performance.

studies also demonstrate the importance of allowing updates of the codebook vectors when adopting a vector-quantized repre-
sentation space. Since the choice of the means of the codebook vectors seems to impact the performance (as evident in the last
two rows in Table 1), initializing all codebook vectors with zero means and updating them during training eliminates the need
to fine-tune the means at initialization.

4.2. Testing the speed of K-means algorithm after each iteration

We test the speed of running the K-means algorithm when training on different datasets, and Table 2 shows the results. The table
shows the average and standard deviation of the time elapsed by the K-means algorithm after each training epoch in seconds
for each of three datasets, along with the dimensions of the learned representation the algorithm is run on and the number of
samples. Although increasing data size will increase the time of running the algorithm, we expect the time to only increase
linearly as the time complexity of K-means is linear in dimensions and number of samples. It should be pointed out that the
K-means algorithm in the proposed method is run on the learned representation space, which is in lower dimensions than the
input data.

Dataset MNIST Fashion MNIST AFHQ

of Samples, # of dimensions 19000, 49 19000, 49 3300, 1024
K-means Elapsed Time (s) 0.0207± 0.0038 0.0292± 0.0174 0.3681± 0.0071

Table 2: Time Elapsed in running K-means algorithm after each training epoch

4.3. Testing different α values

We conducted an experiment to assess the effectiveness of our method when the likelihood of positive samples was either less
or greater than that of negative samples, characterized by different α values. We then compared the outcomes of this experiment
with the results obtained using TEDn method in Table 3.

α = 0.2 α = 0.4 α = 0.5 α = 0.6 α = 0.8

TEDn 86.9± 1 89.5± 2.5 89.9± 14.9 81.5± 3.7 71.1± 2
VQ K-means 97.6± 1.1 96.5± 0.7 95.4± 1.3 84.3± 1.1 70.2± 2.1

Table 3: Classification results with different α values

5. NETWORK ARCHITECTURES

5.1. Encoder in the proposed method

The architecture of the vector quantized encoder used in the proposed method consists of three initial convolutional layers
followed by a stack of six residual layers. The first three layers sequentially process the input data, while each residual layer
in the stack features a combination of a ReLU activation layer and two convolution layers whose output is added to their input
and then used directly for quantization. We use a codebook that consists of 512 64-dimensional vectors that are used for the
quantization of the output vector of the encoder network. For all methods, the same architecture was used by just adapting the
input number of channels (3 for RGB images and 1 for grayscale images).

5.2. Classifier used for baseline methods

In the experiment whose results are presented in Table 2 in the original manuscript, we made a modification to the classifier
architectures used by the baseline methods to accommodate for the change in the dimension of the input data (3 channel 2D
images in the raw data and 1D vectors for the learned representations). The architecture we used for the classifier was a 4-layer
(ReLU) fully connected network reducing the size of the input (1024 → 512 → 256 → 128 → 1) to 1 node that can be used
for binary classification.

6. REFERENCES

[1] Samet Oymak, Zalan Fabian, Mingchen Li, and Mahdi Soltanolkotabi, “Generalization guarantees for neural networks via
harnessing the low-rank structure of the jacobian,” arXiv preprint arXiv:1906.05392, 2019.

[2] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai, “Gradient descent finds global minima of deep neural
networks,” in International conference on machine learning. PMLR, 2019, pp. 1675–1685.

[3] Aaron Van Den Oord, Oriol Vinyals, et al., “Neural discrete representation learning,” Advances in neural information
processing systems, vol. 30, 2017.

[4] Omar Zamzam, Haleh Akrami, and Richard Leahy, “Learning from positive and unlabeled data using observer-gan,” in
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023,
pp. 1–5.

[5] Saurabh Garg, Yifan Wu, Alex Smola, Sivaraman Balakrishnan, and Zachary Lipton, “Mixture proportion estimation and
PU learning: A modern approach,” in Advances in Neural Information Processing Systems (NeurIPS), 2021.

[6] Florent Chiaroni, Ghazaleh Khodabandelou, Mohamed-Cherif Rahal, Nicolas Hueber, and Frederic Dufaux, “Counter-
examples generation from a positive unlabeled image dataset,” Pattern Recognition, vol. 107, pp. 107527, 2020.

[7] Zhangchi Zhu, Lu Wang, Pu Zhao, Chao Du, Wei Zhang, Hang Dong, Bo Qiao, Qingwei Lin, Saravan Rajmohan, and
Dongmei Zhang, “Robust positive-unlabeled learning via noise negative sample self-correction,” in Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 3663–3673.

[8] Yunrui Zhao, Qianqian Xu, Yangbangyan Jiang, Peisong Wen, and Qingming Huang, “Dist-pu: Positive-unlabeled learning
from a label distribution perspective,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 14461–14470.

