
6. APPENDIX

6.1. Evaluating GeoScaler on Meshes with Optimized UV
Mappings

While demonstrating the performance of GeoScaler on the
entire TMQA dataset and the 3DSet5 dataset covers meshes
built and post-processed using a wide range of algorithms,
the performance of GeoScaler when the UV mapping of the
mesh is ”optimal” remains to be seen. An ”optimal” map-
ping reduces the seams in the texture map and attempts to
keep the ratio of areas of triangles in 3D and areas of corre-
sponding triangles in the UV plane as uniform as possible.
Algorithms like OptCuts and AutoCuts are capable of per-
forming the optimization. To demonstrate the performance of
GeoScaler on meshes with optimized UVs we first generate
fresh UV mapping of the meshes in 3DSet5 using OptCuts,
bake the original texture to the new maps, and then apply our
method. The results shown in Table 2 indicate that GeoScaler
continues to improve downsampling performance for meshes
with optimized textures.

6.2. Comparing with Generating Textures in Lower Res-
olution

We also compare the quality of textures downsampled by
GeoScaler on the 3DSet5 dataset with the textures generated
natively at 4x and 8x lower resolutions. Note that the meshes
and textures in the 3DSet5 dataset were reconstructed using a
proprietary tool MetaShape. We use the same application and
pipeline for generating textures at 4x and 8x lower resolu-
tions. The results in Table 3 suggest that downsampling tex-
tures after reconstructing 3D scenes at higher resolutions can
provide higher-quality renders than generating low-resolution
textures directly on 3Dset5.

Scale Metric MetaShape Bicubic Lanczos GeoScaler
Full

4x
PSNR (dB) 32.34 33.72 34.11 35.88

SSIM 0.9022 0.9264 0.9294 0.9524

8x
PSNR (dB) 26.56 28.63 29.34 31.85

SSIM 0.8510 0.8747 0.8779 0.9218

Table 3: Quantitative results comparing GeoScaler with
generating textures at lower resolutions natively

We suspect MetaShape uses bilinear resampling internally
to subsample the images fed during the reconstructing pro-
cess to generate texture maps leading to poor quality. This
leads to interesting future research where per-scene optimiza-
tion methods such as ours can be used for generating higher-
quality texture maps at lower resolutions during the 3D scene
reconstruction process.

6.3. More Results

The results on banjoman and avocado from 3DSet5 are also
shown in Figure 8. Additionally, we also show results on a
few meshes sampled from Google’s Scanned Object dataset
in Figure 8.

We also compared our method with Joint UV Optimiza-
tion and Texture Baking (Knodt et al. IEEE Transactions
on Graphics, 2023). Their code and hyperparameters for
computing rendering-based losses are unavailable publicly.
Their limited dataset only consists of very smoothly textured
meshes with simple geometries and hinders comparison over
diverse real-world captured mesh data. Due to these reasons,
we refrained from including this method in the full paper. In
Table 4, we use the result meshes generated from their own
proposed dataset which they provided in our rendering loss
computation setup to obtain a fair comparison.

4x PSNR/MS-SSIM 8x PSNR/MS-SSIM

Mesh GS Joint UVOpt GS Joint UVOpt
Dragon Jar 36.83/0.996 40.27/0.998 34.79/0.989 33.39/0.988

Garden seat 34.48/0.991 33.12/0.989 30.81/0.979 29.27/0.971

Hemet 39.37/0.999 38.69/0.998 34.40/0.997 33.56/0.995

Cat Statue 38.92/0.996 41.25/0.998 35.92/0.989 36.27/0.991

Chn. Chess 37.99/0.997 41.42/0.998 35.41/0.986 38.77/0.993

Hand Fan 44.68/1.000 40.62/0.999 40.90/0.999 39.67/0.998

Iron Cup 33.66/0.994 32.54/0.994 30.06/0.986 29.33/0.984

Cut Fish 47.36/1.000 46.61/0.999 44.85/0.998 45.45/0.998

Easter Egg 41.12/0.998 44.21/0.999 38.26/0.996 40.31/0.997

Baguette 33.64/0.957 40.31/0.997 31.46/0.934 39.35/0.996

Greek Vase 40.48/0.999 40.53/0.999 38.46/0.997 37.85/0.997

Gundam 26.40/0.992 26.12/0.990 23.59/0.974 21.76/0.967

Italian Car 50.37/1.000 45.27/1.000 46.26/1.000 45.62/1.000

Tea Cup 41.77/0.997 43.59/0.998 38.67/0.990 40.33/0.993

Jpn. Lamp 37.04 /0.996 38.38/0.995 34.55/0.986 36.14/0.988

Lego Fig. 47.56 /1.000 41.89/0.999 43.00/1.000 38.27/0.998

Lemon 52.79/1.000 52.51/1.000 50.31/1.000 48.82/0.998

Mask 51.37/1.000 50.23/1.000 49.46/1.000 49.33/0.999

Golem 43.58/0.999 43.28/0.998 40.60/0.995 41.26/0.994

White Tree 34.22/0.993 17.86/0.815 32.01/0.989 17.88/0.818

Pengu 42.90/0.999 43.57/0.998 40.85/0.997 41.88/0.996

Pony 47.83/0.999 46.26/0.999 45.46/0.998 46.62/0.999

Sand Arena 45.04/0.999 43.93/0.999 43.17/0.999 43.67/0.999

SkateBunny 38.59/1.000 37.70/0.999 35.13/0.998 34.87/0.997

Knight 36.17/0.996 28.88/0.986 33.51/0.992 28.59/0.984

Umbrella 39.86/0.998 36.47/0.995 37.14/0.996 37.82/0.996

Average 40.92/0.996 39.83/0.990 38.04/0.991 37.54/0.986

Table 4: Comparison of GS with Joint UV optimization

All the meshes for which results are shown are in-
cluded in the zipped file along with the supplementary
materials.



Scale Bicubic Lanczos GS Base GS Base+GCM GS Base+UVW GeoScaler (Full)
4x 33.80 / 0.9490 33.91 / 0.9500 34.33 / 0.9531 34.39 / 0.9537 34.55 / 0.9554 35.28 / 0.9610

8x 29.17 / 0.9056 29.23 / 0.9068 29.51 / 0.9142 29.66 / 0.9149 30.25 / 0.9168 31.04 / 0.9222

Table 2: Performance of GeoScaler on meshes with optimized UV mappings. The two numbers in each cell indicate the
PSNR(dB) and SSIM.

4x Downsampling 8x Downsampling

banjoman

avocado

Shoe2 (GSOD)

Shoe (GSOD)

spiderman (GSOD)

4x Downsampling 8x Downsampling

Fig. 8: More Results on remaining 3DSet5 meshes and a few meshes from Google’s Scanned Objects DatasetFor each
mesh result, the top row is the Ground Truth texture, the middle row shows results from GeoScaler, and the bottom row shows
results using Bicubic


	 Introduction
	 Method
	 Overview
	 Model Architecture
	 GeoCoding Module
	 UVWarper Module
	 Rendering Loss and Optimization

	 Experiments
	 Implementation Details
	 Datasets
	 Results and Ablation Study

	 Conclusions
	 References
	 Appendix
	 Evaluating GeoScaler on Meshes with Optimized UV Mappings
	 Comparing with Generating Textures in Lower Resolution
	 More Results


