
SUPPLEMENTARY MATERIAL
TOWARDS IMAGE COPY DETECTION AT E-COMMERCE SCALE

1. ENSEMBLE MATCH ALGORITHM

Algorithm 1 Ensemble Match Algorithm
Require: im1, im2, algos

Ensure: algos ∈ [SIFT,SuperGlue,LoFTR]
[im1, im2] = PreProcessImage([im1, im2])

allkeypoints← List()
for algo ∈ algos : do

keypoints = FindKeyPoints(algo, im1, im2)

allkeypoints← allkeypoints+ keypoints
end for
inliers = FindInliers(allkeypoints)
return keypoints, inliers

2. ADDITIONAL RESULTS

2.1. Data Augmentation

We show the ablation study on data augmentations used dur-
ing DTML training in Table 1.

Table 1. Performance evaluation on EPID-easy using differ-
ent data augmentation settings

Transforms µAP R@P90

basic 0.70 0.41
basic + intermediate 0.75 0.52
basic + intermediate + advance 0.86 0.73

2.2. Training Parameters

We show the effect of γ, margins and margind parameters
used in dual triplet loss formulation on copy detection perfor-
mance on EPID-easy dataset in Table 2 and Table 3.

2.3. Ensemble Model

We study the performance of the ensemble configurations as
shown in Table 4. We use the EnsembleMatch + MDE (img)

Table 2. Impact of γ on DTML performance

γ µAP R@P90

0 0.75 0.46
0.2 0.82 0.70
0.4 0.86 0.73
0.6 0.72 0.43
0.8 0.69 0.38
1.0 0.51 0.18

Table 3. Impact of triplet margins on DTML performance

margins margind µAP R@P90

0.01 0.05 0.79 0.62
0.01 0.1 0.76 0.46
0.05 0.1 0.86 0.73
0.05 0.5 0.80 0.69
0.1 0.05 0.79 0.68

evaluation setting on EPID-difficult and change only the com-
binations of local feature matchers within the ensemble. We
can clearly observe that different combinations of local fea-
ture matchers have varying performance regimes and show
additive improvements over standalone models.

Table 4. Ablation study of different combinations of the En-
sembleMatch

EnsembleMatch µAP R@P80

SIFT + SuperGlue 0.71 0.55
SIFT + LoFTR 0.76 0.65
SuperGlue + LoFTR 0.75 0.63
SIFT + SuperGlue + LoFTR 0.88 0.85

2.4. Latency Measurements

We test model latency on 100 randomly sampled image pairs
and report the averaged results in Table 5. To standardize
the latency estimates, the image pairs are resized to (640,
480) which matches the resolution of phone clicked images
and preserves sufficient local details to detect and match key-



points. For global embedding models, we report the time
taken to compute embeddings for an image pair and estimate
similarity score using vector dot product. For image match-
ing model, latency is the time taken to extract and match key-
points. SIFT utilizes the standard CPU implementations for
measurements. For LoFTR and SuperGlue, the measurements
are performed on an NVIDIA T4 GPUs. The latencies largely
depend on the image pair size. In practice, the claim image
resolutions do range widely depending on the handset’s cam-
era quality.

Table 5. Latency measurements

Method Timing (ms)

ResNet50 (simCLR/SSCD/DTML) 14
DINO ViT-B/8 18

SIFT 152
SuperGlue 128
LoFTR 172
EnsembleMatch 450
EnsembleMatch + MDE (img+tab) 455

2.5. Qualitative Results

Figures 1 and 2 highlights qualitative performance of the
match algorithms EPID datasets. The performance of the
individual models appears to be inconsistent across simple
as well as challenging variations as discussed, hence it is
difficult to index the match based on any one algorithm.
EnsembleMatch plays out on the strengths of each match
algorithm and results in superior quality matches and inliers.
EnsembleMatch consistently estimates more correct matches
and fewer mismatches, successfully coping with repeated
texture, large viewpoint, and illumination changes. We fur-
ther observe that, applying outlier filtering on the aggregated
matches using a robust estimator (RANSAC or MAGSAC),
removes noisy matches detected by individual models and
outputs more consistent matches. Interestingly, the task of
copy detection in our usecase is governed based on matches
from both the foreground subjects with product artefacts such
as damage, orientations, and written text as well as the back-
ground scenes to successfully ascertain a duplicate image.
EnsembleMatch displays that with a combination of models
each with their individual strengths, it can decently handle
copy detection tasks in more complex scenarios.

We also qualitatively highlight the Top10 image retrieval
results for sample queries from EPID-easy in Figure 3.

2.6. CopyDays Results

Figure 4 shows the top-10 retrieval outputs (on right) for each
sample probe image (on left). We observe that embeddings
from our DTML method is robust to most of the commonly

used copy attacks to produce near duplicates. We also high-
light some of our model failures (last two rows) in detecting
severe attacks involving strong image transformations.

3. EPID-DIFFICULT

The data augmentations used to generate EPID-difficult are
listed in Table 6. Figure 5 shows sample images from EPID-
easy and EPID-difficult dataset.
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Fig. 1. Qualitative comparison on challenging multi-view images from EPID-Easy. Here, the reference image is the multi-
view instance of the product from the same scene. LoFTR is inconsistent in detecting keypoints within image pairs with slight
viewpoint change (d) coupled with changes to scale (a). (b) represents the case where the query image is a picture of picture,
SuperGlue and SIFT detects fewer high quality keypoints. SIFT and LoFTR detects fewer keypoints (c,d) due to large viewpoint
changes. EnsembleMatch is able to produce more consistent matches with its match aggregation and filtering logic.
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Fig. 2. Qualitative comparison on EPID-difficult dataset. The first column shows the input image pair and subsequent columns
shows the performance of match algorithms. SIFT is unable to detect good matches under illumination (a,e) and high per-
spective transforms (c). SuperGlue detects coarse keypoints while LoFTR detects dense points in the co-visible region in chal-
lenging cases with cutout overlays, perspective and illumination changes. EnsembleMatch finds robust inliers from aggregated
keypoints of individual methods.
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Fig. 3. Illustration of Top10 image retrievals using our proposed method. Note that, near-duplicates (highlighted in green)
appear precisely among the top retrievals, followed by visually similar images.

Fig. 4. Image retrieval results for sample probe images (left) from Copydays ranked by their similarity score using DTML. The
original/source image is highlighted in green.



Table 6. Data augmentations used in creating positive pairs for online triplet formulation and for generating EPID-difficult
dataset.

Transformation Description Parameter Setting

RandColorJitter Randomly change the brightness, contrast, saturation and hue of an image with
probability of p.

p = 0.5, jitter strength = 0.8

RandNoise Adds random Gaussian noise to the image with mean and var. p = 0.5, mean = 0, var = 0.001
RandEncodingQuality Randomly changes the JPEG encoding quality level. p = 0.5, quality ∈ [0, 100]
RandOpacity Randomly alters the opacity of an image. p = 0.5, level ∈ [0, 1]
RandCutOut Fill one or more rectangular areas in an image using a fill mode. p = 0.5, size ∈ [.2, .8], pos = center
RandScreenshot Overlay the image onto a screenshot template. p = 0.5
RandPerspective Apply a perspective transform to the image so it looks like it was taken from

different viewpoint
p = 0.5, distortion scale = 0.75
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Fig. 5. Sample input images from EPID-easy (top row) and corresponding transformed images in EPID-difficult (bottom row)
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