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Table 1. Reproduced baseline results on Gait3D. mAP and

mINP denote mean average precision and mean inverse nega-

tive penalty, respectively.

Model

Gait3D

✗ Data Aug. ✓ Data Aug.

Rank-1 mAP mINP Rank-1 mAP mINP

Euclidean Distance

GaitGL 28.1 20.4 12.2 31.5 22.4 13.2

GaitPart 26.6 20.1 11.8 29.7 22.0 12.8

GaitSet 37.9 30.4 17.9 39.7 32.0 19.0

SMPLGait w/o 3D 44.8 35.7 21.6 42.9 33.4 19.5

GaitBase 55.5 46.6 30.1 63.2 53.2 35.1

Cosine Distance

GaitGL 29.2 21.1 12.3 32.4 22.9 13.7

GaitPart 31.2 23.2 13.5 38.7 29.4 17.6

GaitSet 42.2 33.4 19.4 47.8 39.4 24.4

SMPLGait w/o 3D 45.5 36.8 21.7 42.9 33.7 20.0

GaitBase 56.5 47.3 29.1 65.8 55.8 36.5

1. EXPERIMENTS

1.1. Reproduction of Baseline Results

Using the OpenGait [1] framework, we reproduced five exist-

ing deep gait recognition models— GaitGL [2], GaitPart [3],

GaitSet [4], SMPLGait w/o 3D [5], and GaitBase [1]—both

with and without data augmentation during training. Each

model was trained using the standard supervised learning ob-

jective and evaluated for its gait recognition performance. Ta-

ble 1 and Table 2 present the reproduced baseline results on

Gait3D [5] and GREW [6], respectively. Since we primar-

ily used a single GPU to train each model, rather than the

multi-GPU settings used in OpenGait, our reproduced Eu-

clidean baseline results differ slightly from those reported in

the OpenGait repository. Nonetheless, the results are similar.

Based on our results, we see that training with cosine

distance and Euclidean distance yielded significantly differ-

ent gait recognition performances. Specifically, cosine dis-

tance consistently outperformed Euclidean distance on both

the Gait3D and GREW datasets. Consequently, we opted to

use cosine distance for both training and evaluation through-

out our study. As training for GaitPart is unstable on the

GREW dataset when cosine distance is used, we decided to

exclude GaitPart from our applicability study on GREW.

1.2. Hyperparameter Settings

The default hyperparameters used during diffusion pretrain-

ing are listed in Table 3. Depending on the memory require-

Table 2. Reproduced baseline results on GREW.

Model

GREW

✗ Data Aug. ✓ Data Aug.

Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

Euclidean Distance

GaitGL 50.8 66.7 72.5 56.3 71.2 76.0

GaitSet 47.5 64.7 71.2 51.7 68.1 74.0

SMPLGait w/o 3D 45.8 63.3 70.0 50.9 68.6 74.9

GaitBase 58.9 73.7 79.0 59.4 74.3 79.9

Cosine Distance

GaitGL 54.0 68.8 73.9 58.4 72.3 77.2

GaitSet 48.1 65.2 71.4 53.1 69.7 75.7

SMPLGait w/o 3D 47.6 64.8 71.2 52.1 69.0 74.8

GaitBase 58.1 73.5 78.6 61.8 76.7 81.7

ment, we used either RTX 3090 or RTX A6000 GPUs for

pretraining, as indicated in Table 4. To ensure fairness, both

the reproduction of the baseline results in Section 1.1 and our

transfer learning experiments were conducted using the same

GPU shown in Table 5. For GaitBase with data augmentation,

as it was impossible to achieve similar performance as stated

in OpenGait using a single GPU, we had to turn to use the

multi-GPU settings originally used by the authors.

1.3. Complete Pretraining Findings

Fig. 1 and Fig. 2 show the gait recognition performance for

the different gait feature extractors used at different check-

points of the pretraining process with the Gait3D and GREW

datasets, respectively. For all cases, we observe a steady im-

provement in gait recognition performance during the diffu-

sion pretraining process.

Fig. 3 and Fig. 4 show the recorded mean cosine distance

of the gait features of anchor-positive pairs and the gait fea-

tures of anchor-negative pairs within a batch during pretrain-

ing on the Gait3D and GREW datasets, respectively, for the

different gait feature extractors used. We see that regardless of

the gait feature extractor used, the difference in the cosine dis-

tances between the anchor-positive pairs and anchor-negative

pairs increases and stabilises during diffusion pretraining.

1.4. Transfer Learning Results with Different r Values

Table 6 shows the rank-1 accuracy of the various models on

the Gait3D and GREW datasets with different learning rate

ratio between pretrained and untrained layers, r, attempted.



Table 3. Default hyperparameters used during diffusion pre-

training.

Hyperparameter Value

Latent Diffusion Settings

Autoencoder Tiny AutoEncoder for Stable Diffusion

Diffusion Timestep 1000

Noise Scheduler Inverted Cosine

Loss-Weighting Strategy Medium-Level Noise Prioritization

Condition Pooling Method Mean

Video Diffusion Model Settings

Initial Kernel Size 5

Initial Dimension 64

Dimension Multiplier [1, 2, 4]

Number of Attention Heads 8

Attention Dimension (Per Head) 32

Number of Input Frames 30

Timestep Condition Dimension 256

GroupNorm Number of Groups 32

Pretraining Settings

Batch Size 64 (Gait3D), 128 (GREW)

Optimizer AdamW

Learning Rate (Denoiser) 1e−4

Learning Rate (Gait Feature Extractor) 5e−4

Learning Rate Scheduler CosineAnnealingLR

Training Iterations 120000

Warmup Iterations 2000

Warmup Start Factor 0.01

Input Data Augmentation Settings

RandomAffine Probability 0.2

RandomPerspective Probability 0.2

RandomHorizontalFlip Probability 0.5

RandomPartDilate Probability 0.2

Table 4. GPU used during diffusion pretraining.
Method Gait3D GREW

GaitGL RTX 3090 RTX A6000

GaitPart RTX 3090 -

GaitSet RTX 3090 RTX 3090

SMPLGait w/o 3D RTX 3090 RTX 3090

GaitBase RTX 3090 RTX A6000

Table 5. GPU used during reproduction of baseline and trans-

fer learning.

Method
Gait3D GREW

✗ Data Aug. ✓ Data Aug. ✗ Data Aug. ✓ Data Aug.

GaitGL RTX 3090 RTX 3090 RTX A6000 RTX A6000

GaitPart RTX 3090 RTX 3090 - -

GaitSet RTX 3090 RTX 3090 RTX 3090 RTX 3090

SMPLGait w/o 3D RTX 3090 RTX 3090 RTX 3090 RTX 3090

GaitBase RTX 3090 RTX A6000 RTX A6000 4 × A100
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Fig. 1. Rank-1 accuracy curves during diffusion pretraining

on Gait3D.
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Fig. 2. Rank-1 accuracy curves during diffusion pretraining

on GREW.

2. ABLATION STUDIES

In this section, we present the various ablation studies con-

ducted to investigate the effects that different hyperparameter

settings have on the diffusion pretraining process and down-

stream gait recognition tasks. For all experiments, we used

the backbone of SMPLGait w/o 3D as our gait feature ex-

tractor and Gait3D as the dataset. During transfer learning,

no data augmentation was applied, and the pretrained back-

bone was finetuned with a lower learning rate (0.1×) than the

untrained layers. Aside from the hyperparameter being inves-

tigated, all other hyperparameters were assigned based on the

default pretraining and transfer learning settings. The results

of the various ablation studies are summarized in Table 7.

Noise Scheduler and Loss Weighting: We explored two

kinds of schedulers—a typical cosine scheduler [7] and an in-

verted cosine scheduler [8]. For the cosine scheduler, we at-
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Fig. 3. Mean cosine distance of anchor-positive pair and

anchor-negative pair during diffusion pretraining on Gait3D.
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Fig. 4. Mean cosine distance of anchor-positive pair and

anchor-negative pair during diffusion pretraining on GREW.

tempted a uniform weighting strategy, where losses from dif-

ferent timesteps are weighed equally, and the Min-SNR strat-

egy [9]. As for the inverted cosine scheduler, we attempted

uniform weighting and our proposed medium noise prioriti-

zation (MNP) weighting strategy, which downweighs losses

from both low and high timesteps. We see that focusing on

medium-level noise through the combined use of an inverted

cosine scheduler and medium noise prioritization weighting

strategy worked the best.

Feature Pooling Method: We investigated different

methods to pool the two-dimensional output of the gait

feature extractor into a one-dimensional condition—mean

pooling, max pooling, and the sum of the mean and max. Out

of the three pooling methods, mean pooling worked the best.

Inputs to Denoiser and Gait Feature Extractor: We

investigated what would happen during diffusion pretraining

Table 6. Rank-1 accuracy on the Gait3D and GREW datasets

for different values of r attempted during transfer learning.

Values in bold denote the best results for each model on

Gait3D and GREW.

Method

Gait3D GREW

Rank-1 Accuracy (%) Train Iter. Rank-1 Accuracy (%) Train Iter.

✗ Data Aug. ✓ Data Aug. (×10
3) ✗ Data Aug. ✓ Data Aug. (×10

3)

r = 0.1 r = 0.1
GaitGL 34.4 34.4 120 + 60 46.2 48.0 120 + 125

GaitPart 32.5 39.1 120 + 60 - - -

GaitSet 40.1 47.3 120 + 60 45.1 46.4 120 + 125

SMPLGait w/o 3D 49.1 57.2 120 + 60 43.8 44.5 120 + 125

GaitBase 47.5 55.8 120 + 60 50.7 52.7 120 + 90/120

r = 0.5 r = 0.5
GaitGL 33.1 32.3 120 + 60 54.3 56.5 120 + 125

GaitPart 35.7 41.7 120 + 60 - - -

GaitSet 45.0 49.9 120 + 60 50.9 53.3 120 + 125

SMPLGait w/o 3D 53.4 60.7 120 + 60 49.3 51.2 120 + 125

GaitBase 60.2 68.2 120 + 60 58.5 62.0 120 + 90/120

r = 1.0 r = 1.0
GaitGL 29.4 28.6 120 + 60 56.3 58.6 120 + 125

GaitPart 33.0 38.4 120 + 60 - - -

GaitSet 43.4 48.5 120 + 60 52.0 55.4 120 + 125

SMPLGait w/o 3D 51.1 58.6 120 + 60 51.8 54.1 120 + 125

GaitBase 62.3 69.7 120 + 60 58.5 61.6 120 + 90/120
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Fig. 5. Rank-1 accuracy curves during diffusion pretraining

on Gait3D when sE ̸= sG and sE = sG (SMPLGait w/o 3D).

should the input to the gait extractor sG and the input to the

autoencoder sE be identical. Fig. 5 shows the rank-1 gait

recognition accuracy curves of the gait feature extractor dur-

ing the diffusion pretraining process when sE ̸= sG and sE =

sG .

When sE ̸= sG , we see a steady improvement in gait

recognition accuracy during the diffusion pretraining. Yet,

when sE = sG , the gait recognition accuracy fluctuates over

time, suggesting that what the gait feature extractor is learn-

ing during diffusion pretraining is unlikely to be effective gait

features. Rather, it could be extracting irrelevant reconstruc-

tion features to aid the denoiser in the denoising task.

Data Augmentation During Pretraining: We turned

off data augmentation during diffusion pretraining to investi-

gate the impact on downstream gait recognition performance.

Without any data augmentation during pretraining, a signif-

icant drop in the downstream gait recognition performance

is observed, highlighting the necessity of data augmentation

during diffusion pretraining.

Size of Denoiser: We varied the size of the denoiser that is

used during the diffusion pretraining process by changing its

initial channel dimension. We see that the larger the denoiser,

the better the downstream gait recognition performance. This



Table 7. Downstream rank-1 gait recognition accuracy on Gait3D for different diffusion pretraining hyperparameter settings.

The first row shows the default setting we used for Gait3D. Highlighted entries denote the different hyperparameter settings

compared to our default setting.

Diffusion Pretraining Hyperparameters Gait3D

Noise Scheduler Loss Weighting Pooling Data Augmentation Denoiser Size lG/lD Puncond R-1 (%)

Inverted Cosine MNP Mean ✓ 11.6 M 5 0.15 49.1

Inverted Cosine Uniform Mean ✓ 11.6 M 5 0.15 47.6

Cosine Uniform Mean ✓ 11.6 M 5 0.15 47.5

Cosine Min-SNR Mean ✓ 11.6 M 5 0.15 48.2

Inverted Cosine MNP Max ✓ 11.6 M 5 0.15 47.8

Inverted Cosine MNP Mean + Max ✓ 11.6 M 5 0.15 47.4

Inverted Cosine MNP Mean ✗ 11.6 M 5 0.15 44.6

Inverted Cosine MNP Mean ✓ 3.7 M 5 0.15 47.5

Inverted Cosine MNP Mean ✓ 40.2 M 5 0.15 50.6

Inverted Cosine MNP Mean ✓ 11.6 M 1 0.15 45.9

Inverted Cosine MNP Mean ✓ 11.6 M 2 0.15 47.4

Inverted Cosine MNP Mean ✓ 11.6 M 5 0.00 47.2

Inverted Cosine MNP Mean ✓ 11.6 M 5 0.50 47.7

suggests that further improvements can possibly be made to

the downstream task by increasing the denoiser size during

diffusion pretraining. That said, it would come at the cost of

larger memory consumption and longer pretraining time.

Learning Rate of Denoiser and Gait Feature Extrac-

tor: We investigated how different relative ratios of the learn-

ing rate between the gait feature extractor and denoiser,
lG

lD
,

affect the downstream performance. We kept the denoiser

learning rate constant at 1e−4 and varied the learning rate of

the gait extractor. We observe that increasing
lG

lD
leads to bet-

ter downstream performance.

Unconditional Training Probability: To investigate

the effects of varying the unconditional training proba-

bility, Puncond, during diffusion pretraining, we explored

Puncond ∈ {0, 0.15, 0.5}. We see that our proposed diffu-

sion pretraining approach benefits from classifier-free guid-

ance. However, too high an unconditional training probability

ended up hurting the downstream gait recognition perfor-

mance, likely as the gait feature extractor got updated less. A

moderate unconditional training probability yielded the best

result.
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