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V. PHYSICS-BASED TONEMAPPING

The goal of the physics-based tonemapping network is to
enable the iterative fusion scheme by converting the HDR
output of DiHDR from the linear domain back to the nonlinear
domain of the LDR input images. Consequently, the tone-
mapped results can serve as inputs for subsequent fusion
steps. Traditional tone-mapping methods, such as p-law, can
map HDR images to nonlinear scales for display purposes.
However, these tone-mapped images often exhibit significant
variations from the captured images, particularly in terms of
brightness and contrast. Moreover, learning-based tonemap-
ping approaches are prone to color biases and visual artifacts.
Such biases, even if minor, can accumulate and be exacerbated
across fusion iterations, ultimately compromising the quality
of the results.

We address this issue by modeling the LDR imaging pro-
cess. A realistic imaging model can be formulated as follows,
similar to [1l], [3]. Consider an LDR image, L, captured at an
exposure time of ¢ where the underlying HDR scene irradiance
map is represented by H.

L= ADC{{ X Clip{Poisson(t x QE x (H+ /Jdark))}

/
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where £ is the conversion gain, QE is the quantum ef-
ficiency, pgark 1S the dark current, and oy, is the read
noise standard deviation. Here, Poisson represents the Poisson
distribution characterizing the photon arriving process and the
dark current effect, and AV represents the Gaussian distribution
characterizing the sensor noise. ADC {-} is the analog-to-
digital conversion and Clip{-} is the full well capacity
induced saturation effect. We assume a linear camera response
function for CMOS sensors and that the imperfections in the
pixel array, ADC, and color filter array have been mitigated.

Since our goal is to convert the estimated H to the domain
of L while preserving essential HDR information, we can
remove the random perturbations and lossy processes in the
imaging model. For HDR datasets, we simplify the parameters
&, t, and QE by absorbing them into one exposure-related
scalar ¢ = 4.5 (Equation. (5)), thus providing a physically
motivated initial estimate.

VI. DATASETS

Our 9-input LDR Dataset. This paper collects 10 exposure
brackets with labels, each containing 9 frames of dynamic
scenes with EV values of +4, 3, £2, £1, and 0. We capture
the data using a Sony 6400 camera mounted on a tripod.

Fig. 9: Test set generated by this paper. Our dataset highlights
full motions and 9-frames from EV -4 to EV 4. The reference
frame (EV 0) is marked by a red box in each subset.

The resolution of all images is downsampled to 1500 x 1000
pixels, as shown in Fig. [0]

VII. COMPUTATIONAL COST

Table. [[V] presents a comparison of computational cost for
various methods. The penultimate column lists the parameters
of DiHDR, along with the wall time for processing two
inputs. The last column provides the total time for DiHDR
and ToneNet to process three input frames (2 DiHDR passes
and 1 ToneNet pass) Additionally, we compare GMACs for
different methods. We observe that the computational time
and complexity of iHDR is lower than or comparable to HDR-
Transformer and SCTNet on 3 inputs of 1500 x 1000 images.

VIII. ADDITIONAL VISUAL RESULTS
A. Experiments on HDR Deghosting.

Results on 2-input SIG17 Dataset. Fig. [I0] - Fig. [12]
show the results of HDR deghosting experiments. Our method



TABLE IV: Computational cost comparison of the proposed
solution against other SOTA methods. The input size is set to
1000 x 1500 pixels. The speed is measured on an NVIDIA
A100 GPU.

Method DeepHDR  AHDR HDR- HDR- SCTNet iHDR
GAN Transf.
(7 18] 1) 3] [©]
GMACs 1453.70 2166.69 778.81 981.81 293.77 374.76
Time (s) 0.29 0.35 4.85 6.86 7.12 6.93
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Fig. 10: Qualitative comparison on Scene. I from the SIG17
[2] dataset. Results obtained by DHDRNet [2]], DeepHDR
[7], AHDR [8], NHDRRNet [9], HDR-GAN [4], HDR-
Transformer [3]], SCTNet [6] and Ours. The red box represents
the reference frame.

outperforms other methods in suppressing ghosting artifacts.

Results of Generalization Performance. Since all (2-input)
HDR deghosting methods are trained on the 2-input SIG17[2]]
dataset, we explore their generalization performance on the
untrained SCTNet dataset[6]. Fig. [I3] - Fig. [I8] demonstrate
the results of these methods tested on out-of-domain data.
Our method outperforms others in ghosting suppression, color
reproduction, and detail preservation.

B. Flex Imaging

We validate the capability of the proposed iHDR to handle
an arbitrary number of inputs on our collected dataset and
compare it with other 3-input frameworks. Fig. [I9] - Fig. [2]]
demonstrate the visual results.

IX. Q& A

In this section, we list a few questions and answers that
might interest readers.
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Fig. 11: Qualitative comparison on Scene. 2 from the SIG17
[2] dataset. Results obtained by DHDRNet [2]], DeepHDR
[71, AHDR [8], NHDRRNet [9], HDR-GAN [4]], HDR-
Transformer [3]], SCTNet [6] and Ours. The red box represents
the reference frame.

Q1. What is the major advantage of ToneNet over other
tonemapping methods?

Answer: Since ToneNet is inspired by the sensor’s physics
model, it does not introduce systematic bias into the mapping
process. Other tonemapping methods, as shown in Fig. ??,
tend to render images based on oversimplified models and
hence cause an inevitable domain shift. After iterative fusion
steps, the outputs tonemapped by other methods will easily
accumulate, making the system unstable.

Q2. How does your method perform on the (3-input) SIG17
dataset?

Answer: Beating the SOTA 3-input HDR deghosting meth-
ods is not our priority in this paper. Our method introduces
a flexible fusion approach for HDR imaging. Moreover, it is
noteworthy that our method was only trained on the 2-input
dataset and tested on the 3-input dataset, while other methods
were trained on the 3-input manner. From this perspective, our
results are not bad.

Q3. Why are all PSNR/SSIM scores so low on your own
test dataset?

Answer: This is caused by our collected dataset, which has
large full motions (both foreground and background) and many
exposure-uneven scenes. Generating high-quality HDR images
on our dataset is more challenging than other datasets.
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Fig. 12: Qualitative comparison on Scene. 3 from the SIG17
[2] dataset. Results obtained by DHDRNet [2]], DeepHDR
[7], AHDR [8], NHDRRNet [9], HDR-GAN [4], HDR-
Transformer [3]], SCTNet [6] and Ours. The red box represents
the reference frame.

Q4. You propose iHDR to process HDR imaging with a
flexible number of inputs, so can I say that the more frames
you use, the better the results?

Answer: Not exactly. The optimal number of frames de-
pends on the scene. For example, for cases with uniform and
moderate exposure, two frames are enough for HDR; more
frames will not produce better results and may even introduce
more harmful artifacts.

Q5. Can you talk about significant challenges for (your or
others’) HDR imaging approaches?

Answer: Dataset. The primary drawback of HDR imaging
lies in the scarcity of comprehensive datasets. Existing HDR
imaging datasets are often limited in size and diversity, lacking
a wide range of real-world scenes encompassing various light-
ing conditions (daytime/nighttime, low-light, indoor/outdoor)
and camera settings (ISO, aperture, focal length, exposure
time). Consequently, methods trained on such datasets may
exhibit poor generalization capability when applied to real-
world scenarios.
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Fig. 14: Qualitative comparison on Scene. B from the SCT-
Net dataset[6]. Results obtained by DHDRNet [2], Deep-
HDR [7], AHDR [8]], NHDRRNet [9], HDR-GAN [4], HDR-
Transformer [3]], SCTNet [6] and Ours. The red box represents
the reference frame.
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Fig. 15: Qualitative comparison on Scene. C from the SCT-
Net dataset[6]. Results obtained by DHDRNet [2], Deep-
HDR [7], AHDR [8]], NHDRRNet [9], HDR-GAN [4], HDR-
Transformer [3]], SCTNet [6]] and Ours. The red box represents
the reference frame.
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Fig. 16: Qualitative comparison on Scene. D from the SCT-
Net dataset[6]. Results obtained by DHDRNet [2], Deep-
HDR [[7], AHDR [8]], NHDRRNet [9], HDR-GAN [4], HDR-
Transformer [3], SCTNet [6] and Ours. The red box represents
the reference frame.

DeepHDR

HDR-GAN

SCTNet Ours

Fig. 17: Qualitative comparison on Scene. E from the SCT-
Net dataset[6]. Results obtained by DHDRNet [2], Deep-
HDR [7], AHDR [8]], NHDRRNet [9], HDR-GAN [4], HDR-
Transformer [3]], SCTNet [6] and Ours. The red box represents
the reference frame.
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Fig. 18: Qualitative comparison on Scene. F from the SCT-
Net dataset[6]. Results obtained by DHDRNet [2], Deep-
HDR [7], AHDR [8], NHDRRNet [9], HDR-GAN [4], HDR-
Transformer [3]], SCTNet [6] and Ours. The red box represents
the reference frame.
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Fig. 19: Qualitative comparison on Scene. I from our dataset.
Results obtained by DHDRNet [2]], DeepHDR [7], AHDR
[8], NHDRRNet [9], HDR-GAN [4], HDR-Transformer [3],
SCTNet [6] and Ours. The red box represents the reference
frame. All 3-input methods are fed with frames marked with
a red heart symbol.
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Fig. 20: Qualitative comparison on Scene. II from our dataset.  gjy 21 Qualitative comparison on Scene. III from our dataset.
Results obtained by DHDRNet [2]], DeepHDR [7], AHDR Results obtained by DHDRNet [2], DeepHDR [7], AHDR
[8], NHDRRNet [9], HDR-GAN [4], HDR-Transformer [3]], (8], NHDRRNet [0], HDR-GAN [4], HDR-Transformer [3],
SCTNet [6] f‘nd Ours. The red box represents the referen'ce SCTNet [6] and Ours. The red box represents the reference
frame. All 3-input methods are fed with frames marked with  fame  All 3-input methods are fed with frames marked with
a red heart symbol. a red heart symbol.
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