
MS-RAFT-3D: A MULTI-SCALE ARCHITECTURE FOR
RECURRENT IMAGE-BASED SCENE FLOW

SUPPLEMENTARY MATERIAL

Anonymous ICIP Submission, Paper ID 2154

Update Niter(1)

Matching
Costs

Dense-SE3

SE(3)-Fld

Mo-Emb

Features 1
Features 2

Context

Depth 1
Depth 2

⇑×2
SE(3)-Fld

Mo-Emb

↑×8 SE(3)-Fld Loss

Initialization

1 1
6
×

(h
,w

)

Update Niter(2)

Matching
Costs

Dense-SE3

SE(3)-Fld

Mo-Emb

Features 1
Features 2

Context

Depth 1
Depth 2

⇑×2
SE(3)-Fld

Mo-Emb

↑×4 SE(3)-Fld Loss1 8
×

(h
,w

)

Update Niter(3)

Matching
Costs

Dense-SE3

SE(3)-Fld

Mo-Emb

Features 1
Features 2

Context

Depth 1
Depth 2

⇑×2
SE(3)-Fld

Mo-Emb

↑×2 SE(3)-Fld Loss1 4
×

(h
,w

)

Update Niter(4)

Matching
Costs

Dense-SE3

SE(3)-Fld

Mo-Emb

Features 1
Features 2

Context

Depth 1
Depth 2

⇑×2 SE(3)-Fld Loss1 2
×

(h
,w

)

(h,w)

Fig. 1. Architecture of MS-RAFT-3D+.

In the following, we first show the architecture of our 4-
scale model. Then we elaborate on our employed context en-
coder and finally, we demonstrate more visual results on the
KITTI [1] and the Spring [2] benchmark.

1. ARCHITECTURE OF MS-RAFT-3D+

Figure 1 shows the architecture of our 4-scale MS-RAFT-3D+
model. It can be seen that in addition to the three scales at
[ 1
16 , 1

8 , 1
4 ], the SE(3) field is also refined at 1

2 resolution. This
allows to capture more details from images. Besides, no bilin-
ear upsampling is needed to upsample the SE(3) field to full
resolution, as the results after convex upsampling are already
at full resolution. Note that for computing the matching costs,
we used the on-demand cost computation from [3].

2. CONTEXT ENCODER

We use a simple top-down feature extractor to compute con-
text features. The architecture is shown in Figure 2. The num-
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Fig. 2. Structure of the context encoder for four scales.

bers in brackets show the number of channels that is output
by each module. Note that the number of context encoder
channels in the ablations of the main paper correspond to the
residual blocks, before applying the 1 × 1 conv. Essentially,
the update unit (which is responsible for computing the resid-
ual flow) is shared among scales. This means, inputs of that
module at each scale must have the same number of channels.
We realize this by employing 1 × 1 convs. Please note that
Figure 2 shows the context encoder for the 4-scale model. In
the case of our 3-scale model, the output of the first residual
block at 1

2 resolution is not passed through a 1 × 1 conv and
is not output by the encoder.

3. QUALITATIVE RESULTS

We present more qualitative results of our method from the
Spring benchmark in Figure 3 and from the KITTI benchmark
in Figure 4. In both cases, our approach achieves detailed re-
sults and lower errors. Importantly in the case of KITTI, as
the top 80 pixels of samples are not considered in the evalu-
ation, they are also not computed, but extended from the last
row’s estimate, as in RAFT-3D [4].
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Fig. 3. Qualitative results of our method and the current SOTA on Spring.

target disparity D2 error optical flow Fl error SF error
CamLiRAFT [6] D2-fg: 1.37, D2-bg: 0.42, D2-all: 0.66 Fl-fg: 6.85, Fl-bg: 0.42, Fl-all: 2.06 SF-fg: 6.92, SF-bg: 0.80, SF-all: 2.36

MS-RAFT-3D+ D2-fg: 1.28, D2-bg: 0.38, D2-all: 0.61 Fl-fg: 2.52, Fl-bg: 0.43, Fl-all: 0.96 SF-fg: 2.92, SF-bg: 0.73, SF-all: 1.29

CamLiRAFT [6] D2-fg: 2.13, D2-bg: 2.37, D2-all: 2.31 Fl-fg: 5.07, Fl-bg: 0.97, Fl-all: 1.91 SF-fg: 5.15, SF-bg: 2.48, SF-all: 3.09

MS-RAFT-3D+ D2-fg: 2.60, D2-bg: 1.86, D2-all: 2.03 Fl-fg: 3.09, Fl-bg: 0.77, Fl-all: 1.30 SF-fg: 3.13, SF-bg: 1.97, SF-all: 2.23

Fig. 4. Visual comparisons of our approach to a SOTA method on KITTI.
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