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ABSTRACT

We introduce an extension to the 3D Gaussian Splatting
(3DGS) framework, designed to provide novel view synthesis
under varying illumination conditions throughout different
times of the day. The goal of the proposed method is to en-
able providing a solution to the novel view synthesis problem
of ”How this scene is going to look like from an unseen po-
sition and an arbitrary time of the day at an arbitrary date”.
The proposed method enables the synthesis of views from
unseen camera positions and at unseen times, and hence un-
seen illumination conditions. Traditional methods like Neural
Radiance Field (NeRF) and earlier 3DGS models are typi-
cally restricted to static scenes with consistent lighting, which
limits their applicability in dynamic real-world environments.
We extend the 3DGS method by integrating time-dependent
appearance modeling using non-causal Markovian modeling
of Spherical Harmonics (SHs) and opacities, enabling render-
ing of 3D scenes with high fidelity and real-time performance
across chronologically sampled and unsampled times.
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1. INTRODUCTION

Novel view synthesis is the challenging task of reconstruct-
ing a 3D scene from a limited set of observations, such that
images of the scene can be generated from unobserved cam-
era positions and unseen illumination conditions. One of the
major challenges for novel view synthesis is the estimation
and modeling of the scene’s appearance and illumination at
different times, sampled and unsampled.

Neural Radiance Field (NeRF) based methods [9, 1, 10,
11, 13, 3, 8] approach this task by learning a combination of
a density field and a viewing-direction-dependent color field.
These approaches require evaluating multiple samples from
the field for each pixel to approximate the volumetric integra-
tion, which makes the methods slow in runtime aspects. On
the other hand, 3D Gaussian Splatting (3DGS) [5] offers real-
time rendering and high-quality rasterization results. 3DGS
reconstructs the scene using a set of 3D Gaussians. Exten-
sions of 3DGS [15, 6, 16, 2, 14] provide solutions for ren-

dering scenes “in the wild” from samples taken at different
times and using observations of the scene in different illumi-
nations and appearances. These methods generate scene rep-
resentations across various times non-chronologically, treat-
ing the different lighting conditions as distinct, isolated illu-
minations without considering the sequence or timing of these
light changes along date and time.

NeRF, [9] and 3DGS, [5] originally addressed the prob-
lem of novel view synthesis where the geometry is fixed
and illumination conditions are consistent. We propose an
approach that provides an extension to the 3DGS method
providing a solution for novel view synthesis under non-
consistent illumination conditions while allowing the model-
ing of scene appearance at unsampled times. More specifi-
cally, the goal of the proposed method is to enable providing
a solution to the novel view synthesis problem which can
be expressed as: ”How this scene is going to look like from
an unseen position and an arbitrary time of the day, at an
arbitrary date”.

Therefore, the proposed approach employs the date/time-
stamp part of the metadata attached to every image taken by
present-day cameras in order to incorporate into the scene
modeling process the different times and appearance condi-
tions in those times to enable the synthesis of a fixed geometry
3D scene with a time-dependent appearance model. The pro-
posed method aims to generate novel views of the scene from
unsampled camera positions and at unsampled times during
the day at some required date.

2. PRELIMINARIES: 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) is a method for novel view
synthesis of a 3D static scene, modeling the scene by a set
of 3D Gaussians. Its input is a set of observations (images)
and their corresponding camera poses. This approach per-
forms real-time rendering using a differentiable rasterizer that
projects the 3D Gaussians to the 2D image plane. In this
model each 3D Gaussian represents a volume of the 3D ob-
served space such that its opacity weighted contribution at
some point p ∈ R3 is given by

Gi(p) = αi · e−
1
2 (p−µi)

TΣ−1
i (p−µi) (1)



Fig. 1: Training architecture. White boxes: our time-aware radiometry modeling blocks. Blue boxes: 3DGS blocks.

where µi is the center of the i-th Gaussian, and Σi =
RiSiS

T
i R

T
i its covariance matrix while Si and Ri are the

scaling and rotation matrices, respectively. αi denotes the
opacity associated with the i-th Gaussian.

In 3DGS [5] the information related to the color of the
Gaussians is expressed using SH coefficients since they al-
low for efficiently representing view-dependent color for each
Gaussian. Thus, for every Gaussian, its view-dependent color
contribution c at some camera location x as viewed at viewing
angle d, is evaluated using the spherical harmonic representa-
tion by

c(d) =

ℓmax∑
ℓ=0

ℓ∑
m=−ℓ

kmℓ Y m
ℓ (d) (2)

where Y m
ℓ are the spherical harmonics basis functions and

{kmℓ }m:−ℓ≤m≤ℓ,ℓ:0≤ℓ≤ℓmax
are the expansion coefficients

while each kmℓ ∈ R3 is a set of 3 coefficients correspond-
ing to the RGB components of c.

Following the splatting of the 3D Gaussians into the im-
age plane, and denoting by gi(p̃) the result of the rasterization
of (1), we have that the color of a pixel p̃ in the image is given
by

Ĉ(p̃) =

n∑
i=1

ci(d)gi(p̃)

i−1∏
j=1

(1− gj(p̃)) (3)

where ci(d) is the color contribution of the ith Gaussian,
given by (2).

The rendered image is used for computing the Loss Func-
tion given by:

L3DGS = (1− λ)L1(Ĉ, C) + λLD-SSIM(Ĉ, C) (4)

where L1(Ĉ, C) is the L1 photometric loss and LD-SSIM(Ĉ, C)
is the SSIM loss.

However, since the task considered in this paper is that
of novel view synthesis where the geometry is fixed and il-
lumination conditions are time-dependent, color and opacity
are now functions of time. Hence, the time-dependent color
expression is given by

c(d; t) =

ℓmax∑
ℓ=0

ℓ∑
m=−ℓ

kmℓ (t)Y m
ℓ (d) (5)

Evaluation of the time dependent projected opacity is de-
scribed in Section 4.2.

3. RELATED WORK

3.1. Rendering static environment

Novel view synthesis has found many applications in recent
years. In [9, 4, 5, 1] it is assumed that the 3D scene is constant
in appearance and illumination. NeRF [9] is a groundbreak-
ing technique that rapidly gained popularity for its ability to
produce photorealistic 3D reconstructions, effectively captur-
ing both the continuous geometric structure and the appear-
ance dependency on the viewer’s perspective. NeRF models
a scene using an MLP that encodes the radiance field into
weights for predicting the color and density of light at any
point in a 3D space as a function of the viewing spatial po-
sition and viewing angle. It is implemented by projecting a
ray through the volume and aggregating the color contribu-
tions, modulated by density, at a sequence of points along
the ray. Although this approach is very accurate and pro-
vides impressive results, it is computationally demanding and



hence not suitable for real-time applications. The main trade-
off between the NeRF-based methods and the 3DGS-based
methods is the time vs. storage trade-off; NeRF-based meth-
ods have much slower runtime compared to the 3DGS-based
methods, but 3DGS methods require larger storage.

3.2. Rendering Varying Appearances

Based on the foregoing methods, upgraded “in-the-wild”
methods have been developed to handle data acquired in
non-static scenes and for modeling the 3D scene at different
illuminations [8, 14, 2, 16, 6, 15]. These “in-the-wild” meth-
ods treat the different illuminations in the dataset as a discrete
set of appearances and create an appearance feature vector for
each image. Then, they synthesize the 3D scene and provide
the ability to render it at a chosen appearance condition from
the discrete set.

In [14, 2, 16, 6, 15] MLP is employed to train weights of
a model that can generate the Gaussians SH or color from the
image’s appearance feature vectors.

WildGaussians [6] employs MLP to predict the affine
transformation that maps the color of the base 3DGS to a
color that matches the input image appearance. The inputs
of the MLP are the Gaussians embeddings, the image em-
beddings, and the Gaussians view-dependent color. This ap-
proach enables the method to tailor the appearance of 3DGS
models to the specific characteristics of individual images.
Similarly, VastGaussian [7] employs a convolutional network
to modify 3D Gaussian splatting output.

SWAG [2] requires a trainable embedding vector for each
image, which is concatenated with the positional encoding of
the Gaussian centers and the Gaussian SH coefficients. This
combination is used to model local appearance variations and
predict the Gaussian color directly from an MLP, and enables
the representation of view-dependent complex details, effec-
tively offsetting any blurring effects. WE-GS [14] calculates
the residual to be added to the original SH coefficients, de-
rived from the 3DGS process, using the Gaussian center po-
sition, the SH coefficients, and the appearance embeddings.
The architecture of WE-GS incorporates multiple stages, in-
cluding CNN, MLP, and U-net, to compute the appearance
embeddings of images.

4. METHOD

Our proposed approach (see Fig. 1) expands the 3DGS
method to handle and model the time-dependent appearance
of static scenes at different dates and times of the day, en-
abling the rendering of the scene at unsampled observation
times and from unseen camera positions. The approach we
propose consists of two main steps: (1) Gaussians’s Appear-
ance Time-Based Model where we create SHs set for each
Gaussian which correspond to the time and date when the ob-
servation samples were taken. (2) Unobserved Appearance

Estimation where we estimate the unobserved appearance
using a non-casual Markov model.

4.1. Training Time-Based Gaussian Appearances

Assuming the scene has been captured at M different time
points, and thus at different illumination conditions, we
model the 3D scene’s appearance at each time point. Each
3D Gaussian is associated with M sets of SH coefficients
and M opacity parameters. Each of the M models is op-
timized to model the matched scene’s appearance at the
corresponding time point. Each set of time-indexed SH co-
efficients provides a view-dependent-time-dependent color
set: {cmi | i = 1, . . . , N, m = 1, . . . ,M}, where N is the
number of 3D Gaussians and m represents the appearance
time index.

After creating SFM points with COLMAP [12] as in the
original 3DGS method [5] we divide the training dataset into
time-dependent sub-datasets and create M sets of SH coeffi-
cients. The optimization in each iteration is based on compar-
ing the resulting rendered image with the original observation
in the dataset.

On rendering, SH and opacity coefficients are selected by
their time index which corresponds to that of the observation
employed in the current iteration. As a result, the optimiza-
tion in the iteration is applied only to the relevant SH and
opacity coefficients of this time interval. Thus, on train-
ing completion, the parameters of each Gaussian are fixed in
time, while the derived SH and opacity coefficients are time
dependent.

4.2. Predicting Appearance at an Unsampled Time

We model the radiometric appearance variations by a non-
causal Markovian model such that the SH coefficients inde-
pendently obey the model where

P (kmℓ (t0)

∣∣∣∣kmℓ (t−s), . . . , k
m
ℓ (t−1), k

m
ℓ (t1), . . . , k

m
ℓ (tq))

= P (kmℓ (t0)

∣∣∣∣kmℓ (t−1), k
m
ℓ (t1))

t−s < · · · < t−1 < t0 < t1 < · · · < tq ∈ R

m : −ℓ ≤ m ≤ ℓ, ℓ : 0 ≤ ℓ ≤ ℓmax (6)

In general, over short times, the radiometric relation be-
tween sampling times is monotonic. Due to its simplicity, in
the following we assume a linear dependency of the radio-
metric model in time. This assumption however, better suits
short-time-interval appearance estimation. Given a time t0
when the scene has not been sampled, we estimate its appear-
ance by estimating the SH set of this time:

kmℓ (t0) = βpk
m
ℓ (t−1) + βfk

m
ℓ (t1) (7)

for m : −ℓ ≤ m ≤ ℓ, ℓ : 0 ≤ ℓ ≤ ℓmax, where kmℓ (t−1) is the
nearest preceding in time available coefficient and kmℓ (t1) is



the closest in time in the future. βp and βf are the predictor
coefficients. The coefficients βp and βf are given by:

βp =
t1 − t0
t1 − t−1

, βf =
t0 − t−1

t1 − t−1
(8)

Estimation of the opacity at an unobserved time follows a sim-
ilar methodology to that applied for the SH coefficients. More
specifically, the opacity of the i-th Gaussian at an unobserved
time t0 is given by:

σ−1(αi(t0)) = βpσ
−1(αi(t−1)) + βfσ

−1(αi(t1)) (9)

where σ−1(x) denotes the logit function. The Loss function
we use is identical to that of the original 3DGS given by (4).

5. EXPERIMENTS

We constructed a new dataset, containing sequences of im-
ages such that each sequence is a set of time-labeled observa-
tions on a scene at varying times throughout the day. The
dataset was captured using a standard smartphone camera.
The experimental sequences are employed to evaluate the ef-
fectiveness of our proposed method in generating novel views
from unseen camera positions and at unseen times of the day.
Each experiment is performed on a different static scene using
three different sequences taken at different times. The exper-
iments take place at times when appearance changes of the
scene are fast, such as during sunset times.

16:42 16:59 17:23

with 16:59

without 16:59

Ground Truth

Table 1: Rendering and estimating the appearance at the 16:59 time
interval on Sheep Sculpture dataset using the 16:42 interval appear-
ance and 17:23 interval appearance. Upper row: Reconstruction of
the appearance at the three time intervals with the 16:59 interval in
the dataset. Middle row: Reconstruction of the appearance at the
three time intervals without the 16:59 interval in the dataset. Lower
row: GT appearances in the considered time intervals.

16:38 16:51 17:01

with 16:51

without 16:51

Ground Truth

Table 2: Rendering and estimating the appearance at the 16:51 time
interval on Stone-Chair dataset using the 16:38 interval appearance
and 17:01 interval appearance. Upper row: Reconstruction of the
appearance at the three time intervals with the 16:51 interval in the
dataset. Middle row: Reconstruction of the appearance at the three
time intervals without the 16:51 interval in the dataset. Lower row:
GT appearances in the considered time intervals.

In Table 1 and Table 2 we present the results of rendering
the scene from an unsampled camera pose and at unsampled
time. Note that this evaluation method is different, and more
realistic than the common practice in NeRF and 3DGS meth-
ods where evaluation is usually performed relative to images
that belong to the training set - which is the test presented in
the first row of Table 1 and Table 2.

Thus, the first row depicts the base experiment, i.e. , the
result of rendering the scene from the same position but at
different times where all three sequences (i.e. , 16:42, 16:59,
and 17:23 in Table 1) are employed for training. The second
row, however, presents the rendering results when the mid-
dle time interval is excluded from the training and rendering
its appearance is based on the Markovian appearance model
and the geometric model obtained using the data of 16:42
and 17:23, only. The third row provides the GT appearances
from nearby positions to that of the renderings. The results
demonstrate the faithful appearance reconstruction relative to
the real lighting at the sampled times.

Table 3 compares the performance of our time-dependent
radiometry model to that of the original 3DGS using two
types of evaluations. The first evaluation examines the simi-
larity between images rendered using the estimated 3D model
and the ground truth images: The dataset contains images
from two time intervals: 16:40 and 17:16, and hence with
significant illumination variations. Since 3DGS assumes
constant illumination conditions, the existence of illumina-
tion variations, inevitably results in performance degradation
which includes appearance of ”ghost blobs” on rendering.
On the other hand the proposed time-dependent appearance
model does not produce such artifacts, as it is a time-aware
procedure. The numerical evaluation shows the performance
gain obtained using our time-dependent model over the base-
line 3DGS.

Unlike the common evaluation practice for NeRF and



(a) 16:42 (b) 16:45 (c) 16:50 (d) 16:55 (e) 16:57

(f) 17:05 (g) 17:10 (h) 17:15 (i) 17:20 (j) 17:23

Fig. 2: Sequence of images showcasing appearance changes over time, (a), (e) and (j) are the time interval’s appearances included in the
training dataset; (b), (c), (d), (f), (g), (h), and (i) are estimated appearances of renderings at unobserved times. Note the faithful synthesis of
the monotonicity in the radiometric changes over time.

3DGS methods, where performance evaluation is based on
comparing the rendered image to an image from the training
dataset, the second test involves taking a test image captured
at 16:59 which is not available to the training procedure (in
fact, the entire sequence around 16:59 is not available to
the training procedure) and assessing each model ability to
render the image from this specific same camera position
at 16:59, based on models trained only with the 16:40 and
17:16 time intervals. In this test as well, the numerical eval-
uation demonstrates the performance gain obtained using the
proposed time-dependent model over the baseline 3DGS.

Method Test image form training set Unseen test image
L1↓ PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑

3DGS 0.034 26.16 0.826 0.040 25.23 0.803
Ours 0.027 27.91 0.855 0.033 26.31 0.788

Table 3: Performance evaluation of the 3D model renderings using
our proposed time-dependent 3DGS and the original 3DGS.

Fig. 2 demonstrates the ability of the proposed method
to track monotonic illumination variations at unsampled time
points. Rendering employs training data collected at three
time points only. Finally, Table 4 provides qualitative per-
formance comparison between our method and 3DGS using
the same input dataset, composed of appearances at time in-
tervals: 16:40 and 17:27, where the goal is to estimate the
appearance at 16:59. Our method estimates the appearance at
16:59, providing reconstruction with significantly fewer ghost
clouds. See Supplementary for 360o views.

6. CONCLUSIONS

We presented an extension to the 3D Gaussian Splatting
framework, augmenting it with a time-dependent appear-
ance model. The time-dependent model employs non-causal
Markovian modeling of the Spherical Harmonics and opacity

1st point of view 2nd point of view

Ours 16:59
appearance estimation

(a) (b)

3DGS

(c) (d)

The data appearances

(e) (f)

Table 4: Qualitative performance comparison between our method
and 3DGS using the same input dataset, composed of appearances
in two time intervals: 16:40 and 17:27. Estimating the appearance at
16:59, our method produces reconstruction with significantly fewer
”ghost clouds.” Unlike our method, 3DGS reconstruction shows in-
consistencies in appearance when rendered from various viewpoints,
(c) and (d) are different viewpoints of the same point cloud. 3DGS
over-fits the input dataset, see (e) and (f) from the training dataset.

parameters in the 3DGS model. It thus enables rendering 3D
scenes with high fidelity and real-time performance across
chronologically sampled and unsampled times. Our method
enables synthesis of views from unseen camera positions
and at unseen time and date, and hence unseen illumination
conditions. The current model is designed to model the radio-
metric variations over relatively short time spans where the
radiometric relation between sampling times is monotonic.
Its adaptation to handle long time spans using a learned non-
causal Markovian model is currently being investigated.
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