Introduction

to the

Special Session
on
Topological Data Analysis

Harish Chintakunta, Michael Robinson, Hamid Krim
$\frac{\text { FLORIDA }}{\substack{\text { POLYTECHNIC } \\ \text { UNIVERSITY }}}$

> NC STATE UNIVERSITT

What is topology?

Not this!
 This is TopoGRAPHY!

(Thanks USGS!) \qquad

What is topology?

Topology is the study of spaces under continuous deformations

Topology and the curse of thresholds

- Although topology is very flexible, it also seems quite brittle. And in signal processing, that's bad!

Pick a different threshold... get different topology

- But a nice idea persists... and in the end prevails Herbert Edelsbrunner, David Letscher, and Afra Zomorodian, Topological persistence and simplification, Discrete Comput. Geom. 28 (2002), no. 4, 511-533.
- Rather than selecting one threshold, let's use them all!

Simplicial complexes

- A simplicial complex is a collection of vertices and ...

A vertex represents an individual measurement taken by a sensor

$$
\left[v_{1}\right]^{\bullet}
$$

Simplicial complexes

- ... edges (pairs of vertices) and ...

Simplicial complexes

- ... higher dimensional simplices (tuples of vertices)
- Whenever you have a simplex, you have all subsets, called faces, too. $\quad\left[v_{2}\right]$

A simplex represents that several measurements should be tested for

Simplicial chain complex

Simplicial chain complex

Simplicial chain complex

Simplicial chain complex

Simplicial chain complex

$$
\xrightarrow[(2)]{\left(\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
+1 & 0 & -1 & 0 \\
0 & +1 & +1 & -1 \\
0 & 0 & 0 & +1
\end{array}\right)\left(\begin{array}{c}
+1 \\
-1 \\
+1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)}
$$

Simplicial chain complex

$$
\text { image } \partial_{2}=\text { image }\left(\begin{array}{c}
+1 \\
-1 \\
+1 \\
0
\end{array}\right) \subseteq \text { kernel } \partial_{1}=\text { kernel }\left(\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
+1 & 0 & -1 & 0 \\
0 & +1 & +1 & -1 \\
0 & 0 & 0 & +1
\end{array}\right)
$$

$$
\xrightarrow{\partial_{3}} \mathbb{R}^{\partial_{2}} \mathbb{R}^{4} \xrightarrow{\partial_{1}} \mathbb{R}^{4} \xrightarrow{\partial_{0}} 0
$$

$$
\left(\begin{array}{c}
+1 \\
-1 \\
+1 \\
0
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
+1 & 0 & -1 & 0 \\
0 & +1 & +1 & -1 \\
0 & 0 & 0 & +1
\end{array}\right)
$$

Homology of a chain complex

$$
\text { image } \partial_{2}=\text { image }\left(\begin{array}{c}
+1 \\
-1 \\
+1 \\
0
\end{array}\right) \quad \subseteq \quad \text { kernel } \partial_{1}=\text { kernel }\left(\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
+1 & 0 & -1 & 0 \\
0+1 & +1 & -1 \\
0 & 0 & 0 & +1
\end{array}\right)
$$

$$
H_{2}=\operatorname{ker} \partial_{2} / \operatorname{img} \partial_{3} \quad H_{1}=\operatorname{ker} \partial_{1} / \operatorname{img} \partial_{2} \quad H_{0}=\operatorname{ker} \partial_{0} / \operatorname{img} \partial_{1}
$$

$$
\partial_{3} \longrightarrow \mathbb{R} \xrightarrow{\partial_{2}} \mathbb{R}^{4} \xrightarrow{\partial_{1}} \mathbb{R}^{4} \xrightarrow{\partial_{0}} 0
$$

$$
\left.\left(\begin{array}{c}
+1 \\
-1 \\
+1 \\
0
\end{array}\right) \quad\left[\begin{array}{ll}
{[v]}
\end{array}\right] \begin{array}{cccc}
-1 & -1 & 0 & 0 \\
+1 & 0 & -1 & 0 \\
0 & +1 & +1 & -1 \\
0 & 0 & 0 & +1
\end{array}\right)
$$

Homology of a chain complex

BUBBLES
$H_{2}=\operatorname{ker} \partial_{2} / \operatorname{img} \partial_{3} \quad H_{1}=\operatorname{ker} \partial_{1} / \operatorname{img} \partial_{2}$
∂_{3}
$\rightarrow \mathbb{R}$

$$
\left(\begin{array}{c}
+1 \\
-1 \\
+1 \\
0
\end{array}\right)
$$

$$
\mathbb{R}^{4}
$$

$$
\frac{\partial_{1}}{\left[\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
+1 & 0 & -1 & 0 \\
0+1 & +1 & -1 \\
0 & 0 & 0 & +1
\end{array}\right)}
$$

Persistent homology

Goal: obtain a filtration of spaces from a finite pseudometric space X

$$
X_{0} \subseteq X_{1} \subseteq \quad X_{2} \subseteq \ldots \subseteq X
$$

Tactic: Vietoris-Rips complexes
$\operatorname{VR}_{\varepsilon}(X)=$ set of all subsets of X with diameter ε or less

- This is an abstract simplicial complex, and

$$
\operatorname{VR}_{\varepsilon}(X) \subseteq \operatorname{VR}_{\eta}(X) \text { if } \varepsilon \leq \eta
$$

Persistent homology

Goal: obtain a filtration of spaces from a finite pseudometric space X

$$
H_{k}\left(X_{0}\right) \rightarrow H_{k}\left(X_{1}\right) \rightarrow H_{k}\left(X_{2}\right) \rightarrow \ldots \rightarrow H_{k}(X)
$$

Tactic: Vietoris-Rips complexes
$\operatorname{VR}_{\varepsilon}(X)=$ set of all subsets of X with diameter ε or less

- This is an abstract simplicial complex, and

$$
\operatorname{VR}_{\varepsilon}(X) \subseteq \operatorname{VR}_{\eta}(X) \text { if } \varepsilon \leq \eta
$$

Persistence and model robustness

Dimension 0

Persistence and model robustness

Dimension 0

Michael Robinson

Persistence and model robustness

Michael Robinson

Persistence and model robustness

Michael Robinson

Persistence diagrams

Signal level
Michael Robinson

This sessions' talks

Hierarchical Overlapping Clustering

Fernando Gama, Santiago Segarra, Alejandro Ribeiro

- Clustering: Partition dataset. But sets might not admit a partition.
- Where should the green points go?
- Coverings: Points can be classified in more than one cluster.

- Hierarchical Overlapping Clustering through Cut Metrics.
- Non-overlapping Clustering: Each point in only one cluster. Partition.
- Hierarchical Clustering: Collection of partitions. Resolution of clusters.
- Ultrametrics: Determines resolution at which nodes are clustered together.
- Non-overlapping Clustering \rightarrow Hierarchical Clustering \rightarrow Ultrametrics
- Convex combination of ultrametrics \rightarrow Cut Metrics
- Cut Metrics: Resolution at which nodes are grouped together. No transitivity.
- Nested coverings: Collection of coverings.
- Covering: Nodes can be in more than one group.
- Cut Metrics \rightarrow Nested Coverings (Hierarchical) \rightarrow Covering
- Results: MNIST Handwritten Digits. Authorship Attribution.

Distances between Directed Networks and Applications

Facundo Mémoli, joint work with Samir Chowdhury
Background:
Data sets containing asymmetric edge relations can be interpreted as directed, weighted networks.

A central goal of network analysis is to develop metrics that efficiently compute dissimilarity between networks.

Our Contributions:
A legitimate metric between directed, weighted networks.
Easily computable invariants to test for dissimilarity between networks.
Lower bounds for the network distance, based on these invariants.

Hypergraph signal processing

Sergio Barbarossa and Mikhail Tsitsvero
Idea: Hypergraphs generalize graphs and simplicial complexes
All cliques are simplices
Flag
complex

Undirected
graph

Vertices and edges only

Simplices are defined by their vertices, simplices always have all their faces

Hyperedges defined by vertices, but other than that, anything goes...

Abstract simplicial complex

Persisent local homology

Brittany Fasy and Bei Wang
Idea: local homology detects stratifications!

$$
\begin{aligned}
& \text { Magenta }=0 \\
& \text { Blue }=1 \\
& \text { Cyan }=2 \\
& \text { Green }=3 \\
& \text { Yellow }=4 \\
& \text { Red }=5+
\end{aligned}
$$

Local H_{1}

Local H_{2}

Persistent homology and sliding windows

Jose Perea

Idea:

Persistent homology

Window region

Michael Robinson

For more information

...or if you need anything...
Harish Chintakunta, hchintakunta@flpoly.org
Michael Robinson, michaelr@american.edu Hamid Krim, ahk@ncsu.edu

