Introduction to the Special Session on Topological Data Analysis

Harish Chintakunta, Michael Robinson, Hamid Krim

What is topology?

What is topology?

Topology is the study of spaces under continuous deformations

Topology and the curse of thresholds

• Although topology is very flexible, it **also** seems quite brittle. And in signal processing, that's bad!

Pick a different threshold... get different topology

• But a nice idea *persists*... and in the end prevails

Herbert Edelsbrunner, David Letscher, and Afra Zomorodian, Topological persistence and simplification, *Discrete Comput. Geom.* 28 (2002), no. 4, 511–533.

• Rather than selecting one threshold, let's use them **all**!

Simplicial complexes

• A simplicial complex is a collection of *vertices* and ...

Simplicial complexes

• ... edges (pairs of vertices) and ...

Simplicial complexes

- ... higher dimensional *simplices* (tuples of vertices)
- Whenever you have a simplex, you have all subsets, called *faces*, too. $[v_2]$

 $[v_1, v_2]$

 $[V_1, V_2]$

 $[v_{2}, v_{3}]$

 $[V_1, V_2, V_3]$

A simplex represents that several measurements should be tested for consistency

 $[\mathcal{V}]$

 $[\mathcal{V}_3,\mathcal{V}_4]$

Homology of a chain complex

image
$$\partial_2 = \text{image} \begin{pmatrix} +1 \\ -1 \\ +1 \\ 0 \end{pmatrix} \subseteq \text{kernel } \partial_1 = \text{kernel} \begin{pmatrix} -1 & -1 & 0 & 0 \\ +1 & 0 & -1 & 0 \\ 0 & +1 & +1 & -1 \\ 0 & 0 & 0 & +1 \end{pmatrix}$$

Homology of a chain complex

Persistent homology

<u>Goal</u>: obtain a filtration of spaces from a finite pseudometric space X

$$X_{_0} \subseteq X_{_1} \subseteq X_{_2} \subseteq \ldots \subseteq X$$

<u>Tactic</u>: Vietoris-Rips complexes $VR_{\varepsilon}(X) = set of all subsets of X with diameter \varepsilon or less$

• This is an abstract simplicial complex, and

$$\operatorname{VR}_{\varepsilon}(X) \subseteq \operatorname{VR}_{\eta}(X) \text{ if } \varepsilon \leq \eta$$

Persistent homology

<u>Goal</u>: obtain a filtration of spaces from a finite pseudometric space X

$$H_k(X_0) \to H_k(X_1) \to H_k(X_2) \to \ldots \to H_k(X)$$

<u>Tactic</u>: Vietoris-Rips complexes $VR_{\varepsilon}(X) = set of all subsets of X with diameter \varepsilon or less$

• This is an abstract simplicial complex, and

 $\operatorname{VR}_{\varepsilon}(X) \subseteq \operatorname{VR}_{\eta}(X) \text{ if } \varepsilon \leq \eta$

Persistence diagrams

This sessions' talks

Hierarchical Overlapping Clustering

Fernando Gama, Santiago Segarra, Alejandro Ribeiro

- **Clustering:** Partition dataset. But sets might not admit a partition.
- Where should the green points go?
- **Coverings:** Points can be classified in more than one cluster.
- Hierarchical Overlapping Clustering through Cut Metrics.
- Non-overlapping Clustering: Each point in only one cluster. Partition.
- Hierarchical Clustering: Collection of partitions. Resolution of clusters.
- Ultrametrics: Determines resolution at which nodes are clustered together.
- Non-overlapping Clustering → Hierarchical Clustering → Ultrametrics
- Convex combination of ultrametrics → Cut Metrics
- Cut Metrics: Resolution at which nodes are grouped together. No transitivity.
- Nested coverings: Collection of coverings.
- Covering: Nodes can be in more than one group.
- Cut Metrics → Nested Coverings (Hierarchical) → Covering
- **Results:** MNIST Handwritten Digits. Authorship Attribution.

Classify plays by author and co-authored plays

Distances between Directed Networks and Applications

Facundo Mémoli, joint work with Samir Chowdhury

Background:

Data sets containing asymmetric edge relations can be interpreted as directed, weighted networks.

A central goal of network analysis is to develop metrics that efficiently compute dissimilarity between networks.

Our Contributions:

A legitimate metric between directed, weighted networks.

Easily computable invariants to test for dissimilarity between networks.

Lower bounds for the network distance, based on these invariants.

Hypergraph signal processing

Persisent local homology

Brittany Fasy and Bei Wang

Idea: local homology detects stratifications!

Magenta = 0 Blue = 1 Cyan = 2 Green = 3 Yellow = 4 Red = 5+

Persistent homology and sliding windows

For more information

...or if you need anything... Harish Chintakunta, hchintakunta@flpoly.org Michael Robinson, michaelr@american.edu Hamid Krim, ahk@ncsu.edu

