

Target detection for depth imaging using sparse single-photon data

Yoann Altmann, Ximing Ren, Aongus McCarthy, Gerald Buller, **Steve McLaughlin**

Engineering and Physical Sciences School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom **Research** Council

{Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin}@hw.ac.uk Part of this work has been supported by EPSRC via grants EP/N003446/1, EP/J015180/1, EP/K015338/1 and EP/M01326X/1

1. Introduction

Depth imaging using single-photon Lidar

- Active imaging using pulsed-lasers
- Accurate depth/range resolution (< centimeters at several hundreds of meters in air)

Target detection problem

- Usually performed during post-processing (reflectivity thresholding)
- Estimation and detection performance highly dependent on the background levels
- Severe performance degradation in the limit of low "useful" detections

• Depth/range parameters:

Uniform prior distributions $p(t_{i,j} = t | z_{i,j} = 1)$ to reflect the lack of knowledge about the 3D structure of the scene

• Reflectivity coefficients: Hierarchical prior model using conjugate gamma/inverse-gamma priors

$r_{i,j}|\alpha,\beta \sim \mathcal{G}(\alpha,\beta), \quad \forall (i,j)$

- ☞ 3D image reconstruction
 - -Long range imaging (defence)
 - -Building monitoring (heritage convervation)
 - Environmental sciences: forest monitoring
 - Underwater imaging

Single-surface obervation model

• observed Lidar waveform $\mathbf{y}_{i,j} = [y_{i,j,1}, \dots, y_{i,j,T}]^T$

 $y_{i,j,t}|r_{i,j}, t_{i,j}, b_{i,j} \sim \mathcal{P}\left(r_{i,j}g_0\left(t - t_{i,j}\right) + b_{i,j}\right)$

- $-y_{i,j,t}$: photon count within the *t*th bin of the pixel (i, j)
- $-b_{i,j} > 0$: background and dark photon level
- $-t_{i,j}$: position of an object (if present) at a given range from the sensor
- $-r_{i,j}$: object reflectivity
- $-g_0(\cdot) > 0$: instrumental impulse response

Fig. 1: Single-photon Lidar principle.

Model selection problem

• observed pixel spectrum

$$y_{i,j,t}|z_{i,j} = 0, \boldsymbol{\theta}_{i,j}^{0} \sim \mathcal{P}\left(b_{i,j}\right)$$

$$y_{i,j,t}|z_{i,j} = 1, \boldsymbol{\theta}_{i,j}^{1} \sim \mathcal{P}\left(r_{i,j}g_{0}\left(t - t_{i,j}\right) + b_{i,j}\right)$$

• $z_{i,j}$: binary label for target detection

•
$$\boldsymbol{\theta}_{i,j}^0 = r_{i,j} \in \mathbb{R}^+$$

• $\boldsymbol{\theta}_{i,j}^1 = [r_{i,j}, t_{i,j}, b_{i,j}] \in \mathbb{R}^+ \times \mathbb{T} \times \mathbb{R}^+$

• T: admissible set of target ranges

Proposed method: Joint target detection and depth/reflectivity estimation using Bayesian inference

2. Proposed Bayesian model

Likelihoods

• Defined by (2) and (3)

Parameter prior distributions

• Background levels: Gamma Markov random [1, 2] to capture spatial dependencies affecting the ambient illumination Improves the parameter estimation in the limit of few detected counts.

 $\alpha | \alpha_1, \alpha_2 \sim \mathcal{G}(\alpha_1, \alpha_2)$ $\beta | \beta_1, \beta_2 \sim \mathcal{IG}(\beta_1, \beta_2)$

• Detection/model selection labels: Ising model

(1)

(2)

 $f(\mathbf{Z}|c) \propto \exp[c\phi(\mathbf{Z})]$

 $-\phi(\mathbf{Z}) = \sum_{i,j} \sum_{(i',j') \in \mathcal{V}_{i,j}} \delta\left(z_{i,j} - z_{i',j'}\right)$ $-\delta(\cdot)$: Kronecker delta function $-\mathcal{V}_{i,j}$: set of neighbours of pixel (i,j)-c: spatial granularity parameters

Joint posterior distribution

 $f(\mathbf{Z}, \mathbf{\Theta}, \alpha, \beta | \mathbf{Y}, c) \propto \left[\prod_{i,j} f(\mathbf{y}_{i,j} | z_{i,j}, \boldsymbol{\theta}_{i,j}) f(\boldsymbol{\theta}_{i,j} | \mathbf{Z}, \alpha, \beta) \right]$ $\times f(\mathbf{Z}|c)f(\alpha)f(\beta).$

Reversible-Jump Markov chain 3. Monte Carlo algorithm

- Bayesian estimation in union of subspaces
- Pixel-wise model selection but...
- Dependencies between pixels (spatial correlation)
- \Rightarrow MCMC method for global Bayesian inference

Moves within a subspace

- Updating $b_{i,j}$ and $r_{i,j}$: standard Gibbs step (conditional distr.) \rightarrow mixtures of gamma distributions)
- Updating $t_{i,j}$: Sampling from a discrete distribution (finite support

Moves between subspaces

- Move from $z_{i,j} = 0$ to $z_{i,j} = 1$: Proposal distribution designed to generate candidates in regions of high prob. \rightarrow High acceptance rate (good mixing properties)

Other parameters

- Updating β : standard Gibbs step (conditional distr. \rightarrow inversegamma)
- · Updating α : Metropolis-Hastings step (non-standard conditional distr.)

	Acquisition Time				
		$300\mu s$	1ms	3ms	$30 \mathrm{ms}$
Av. photon counts	noon	5.6	18.5	55.5	554.6
	3 p.m.	4.1	13.7	41.0	408.9
	8 p.m.	1.2	4.9	11.6	116.0
Empty pixels $(\%)$	noon	2.79	< 0.01	0	0
	3 p.m.	4.2	0.02	0	0
	8 p.m.	61.8	52.2	40.4	2.2

Table 1: Average number of detected photons per pixel and proportion of empty pixels for the different acquisitions.

Detection performance

			π_{00}	π_{10}	π_{01}	π_{11}
noon	3ms	X-corr	79.9	20.1	8.9	91.1
		Prop. algo.	99.9	0.01	10.8	89.2
	1ms	X-corr	57.4	42.6	16.9	83.1
		Prop. algo.	99.9	0.01	18.6	81.4
	$0.3\mathrm{ms}$	X-corr	59.6	40.4	39.1	60.9
		Prop. algo.	99.9	0.01	20.4	79.6

Table 2: Detection performance (prob. in %)

Fig. 4: Target ranges estimated by the standard (top) and proposed (bottom) method.

Fig. 5: Target reflectivity (noon) estimated by the standard (top) and proposed (bottom) method.

- Updating c: stochastic gradient (during burn-in) [3]

4. Results

Data acquisition

- Detection of a life-sized polysterene head at 325m
- -3 acquisitions : noon, 3p.m., and 8.pm
- Different acquisition times per pixel

Fig. 3: Example of detection (noon) results obtained by the standard (top) and proposed (bottom) method.

Fig. 6: Background levels (noon) estimated by the standard (top) and proposed (bottom) method.

References

[1] O. Dikmen and A. Cemgil, "Gamma markov random fields for audio source modeling," IEEE Trans. Audio, Speech, Language Processing, vol. 18, no. 3, pp. 589-601, March 2010. [2] Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, "Lidar waveform based analysis of depth images constructed using sparse single-photon data," IEEE Trans. Image Processing, 2016, to appear.

[3] M. Pereyra, N. Whiteley, C. Andrieu, and J.-Y. Tourneret, "Maximum marginal likelihood estimation of the granularity coefficient of a Potts-Markov random field within an mcmc algorithm," in Proc. IEEE-SP Workshop Stat. and Signal Processing, Gold Coast, Australia, July 2014.