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1. Introduction

Depth imaging using single-photon Lidar

e Active imaging using pulsed-lasers

e Accurate depth/range resolution (< centimeters at several hun-
dreds of meters in air)

[1 3D image reconstruction
— Long range imaging (defence)
— Building monitoring (heritage convervation)

— Environmental sciences: forest monitoring

— Underwater imaging

Single-surface obervation model

e observed Lidar waveform y; ; = [y; j1,...,¥; j,T]T

Vi jtlrigs tig bij ~ P (rijgo (t — ti ) + bij)

—¥; j.+ photon count within the £th bin of the pixel (7, j)

—b; ; > 0: background and dark photon level

—t; ;i position of an object (if present) at a given range from
the sensor

— 1 4. object reflectivity

—go(+) > 0: instrumental impulse response
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Fig. 1. Single-photon Lidar principle.

3. Reversible-Jump Markov chain

Monte Carlo algorithm

e Bayesian estimation in union of subspaces
e Pixel-wise model selection but...

e Dependencies between pixels (spatial correlation)

= MCMC method for global Bayesian inference

Moves within a subspace

— Updating b; ; and r; ;: standard Gibbs step (conditional distr.
— mixtures of gamma distributions)

— Updating ¢; ;: Sampling from a discrete distribution (finite sup-
port)

Moves between subspaces

— Move from z; ; =0 to z; ; = 1:
Proposal distribution designed to generate candidates in regions
of high prob. — High acceptance rate (good mixing properties)

Other parameters

— Updating §: standard Gibbs step (conditional distr. — inverse-
gamma)

— Updating a: Metropolis-Hastings step (non-standard conditional
distr.)

— Updating ¢: stochastic gradient (during burn-in) [3]

4. Results

Data acquisition
— Detection of a life-sized polysterene head at 325m
— 3 acquisitions : noon, 3p.m., and 8.pm

— Different acquisition times per pixel
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Target detection problem
e Usually performed during post-processing (reflectivity threshold-

ing)
e Fistimation and detection performance highly dependent on the
background levels

e Severe performance degradation in the limit of low “useful” de-
tections

Model selection problem

e observed pixel spectrum

yijitlzi; = 0,67 ~ P (b ;) (1)
1

=100 ~ P(rigoo(t—tij) +bij)  (2)

e 2; ;. binary label for target detection

0 =r;j ERT

° 9,}7]- = [Ti,j7ti,j7bi,j] cRT™ x T xRT

e T: admissible set of target ranges

Yijgt

Proposed method: Joint target detection and depth /reflectivity es-
timation using Bayesian inference

2. Proposed Bayesian model

Likelihoods
e Defined by (2) and (3)
Parameter prior distributions

e Background levels: Gamma Markov random [1, 2] to capture
spatial dependencies affecting the ambient illumination
Improves the parameter estimation in the limit of few detected
counts.

Acquisition Time
300us| Ims |3ms | 30ms
noon | 5.6 18.5 |55.5/554.6
Av. photon counts|3 p.m.| 4.1 13.7 141.0]408.9
8pm.| 1.2 4.9 |11.6/116.0
noon | 2.79 < 0.01| O 0
Empty pixels (%) |3 pm.| 4.2 | 0.02 | 0 0
8pm.| 61.8 | 52.2 140.4| 2.2

Table 1: Average number of detected photons per pixel and proportion of
empty pixels for the different acquisitions.

Detection performance

o0 | 710 | 701 | 711
s X-corr [79.9120.1| 89 |91.1
Prop. algo.99.9/0.01 | 10.8]89.2
noon | Tms X-corr | H7.4142.6]16.9|83.1
Prop. algo.99.9/0.01 | 18.6|81.4
X-corr [59.6140.4(39.1160.9
0.3ms
Prop. algo.99.9/0.01 | 20.4]79.6

Table 2: Detection performance (prob. in %)
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Fig. 3: Example of detection (noon) results obtained by the standard (top) and
proposed (bottom) method.

e Depth /range parameters:
Uniform prior distributions p(; ; = t|2; j = 1) to reflect the lack
of knowledge about the 3D structure of the scene

e Reflectivity coeflicients:
Hierarchical prior model using conjugate gamma/inverse-gamma
priors

rijla, 8 ~ Gla,B), V(i,j)
alay, an ~ G (ag, as)

6|517 62 ~ 1G (617 62)

e Detection/model selection labels:
[sing model

f(Z|c) o exp |co(Z)]
~O(Z) =321 i Y, 0 (zij — zir jr)

—(+): Kronecker delta function
—V; j: set of neighbours of pixel (4, j)

—c¢: spatial granularity parameters

Joint posterior distribution
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Fig. 2: Directed acyclic graph (DAG) representing the proposed
hierarchical Bayesian model.

Estimation performance
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Fig. 4: Target ranges estimated by the standard (top) and proposed (bottom)
method.
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Fig. 5: Target reflectivity (noon) estimated by the standard (top) and proposed
(bottom) method.
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Fig. 6: Background levels (noon) estimated by the standard (top) and proposed
(bottom) method.
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