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1. Introduction

Depth imaging using single-photon Lidar

•Active imaging using pulsed-lasers

•Accurate depth/range resolution (< centimeters at several hun-
dreds of meters in air)

☞ 3D image reconstruction

– Long range imaging (defence)

– Building monitoring (heritage convervation)

– Environmental sciences: forest monitoring

–Underwater imaging

Single-surface obervation model

• observed Lidar waveform yi,j = [yi,j,1, . . . , yi,j,T ]
T

yi,j,t|ri,j, ti,j, bi,j ∼ P
(

ri,jg0
(

t− ti,j
)

+ bi,j
)

– yi,j,t: photon count within the tth bin of the pixel (i, j)

– bi,j > 0: background and dark photon level

– ti,j: position of an object (if present) at a given range from
the sensor

– ri,j: object reflectivity

– g0(·) > 0: instrumental impulse response

Fig. 1: Single-photon Lidar principle.

Target detection problem

•Usually performed during post-processing (reflectivity threshold-
ing)

• Estimation and detection performance highly dependent on the
background levels

• Severe performance degradation in the limit of low “useful” de-
tections

Model selection problem

• observed pixel spectrum

yi,j,t|zi,j = 0,θ0i,j ∼ P
(

bi,j
)

(1)

yi,j,t|zi,j = 1,θ1i,j ∼ P
(

ri,jg0
(

t− ti,j
)

+ bi,j
)

(2)

• zi,j: binary label for target detection

• θ0i,j = ri,j ∈ R
+

• θ1i,j = [ri,j, ti,j, bi,j] ∈ R
+ × T× R

+

• T: admissible set of target ranges

Proposed method: Joint target detection and depth/reflectivity es-
timation using Bayesian inference

2. Proposed Bayesian model

Likelihoods

•Defined by (2) and (3)

Parameter prior distributions

• Background levels: Gamma Markov random [1, 2] to capture
spatial dependencies affecting the ambient illumination
Improves the parameter estimation in the limit of few detected
counts.

•Depth/range parameters:
Uniform prior distributions p(ti,j = t|zi,j = 1) to reflect the lack
of knowledge about the 3D structure of the scene

•Reflectivity coefficients:
Hierarchical prior model using conjugate gamma/inverse-gamma
priors

ri,j|α, β ∼ G (α, β) , ∀(i, j)

α|α1, α2 ∼ G (α1, α2)

β|β1, β2 ∼ IG (β1, β2)

•Detection/model selection labels:
Ising model

f (Z|c) ∝ exp [cφ(Z)]

– φ(Z) =
∑

i,j

∑

(i′,j′)∈Vi,j
δ
(

zi,j − zi′,j′
)

– δ(·): Kronecker delta function

– Vi,j: set of neighbours of pixel (i, j)

– c: spatial granularity parameters

Joint posterior distribution

f (Z,Θ, α, β|Y, c) ∝





∏

i,j

f (yi,j|zi,j,θi,j)f (θi,j|Z, α, β)





× f (Z|c)f (α)f (β).
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Fig. 2: Directed acyclic graph (DAG) representing the proposed

hierarchical Bayesian model.

3. Reversible-Jump Markov chain
Monte Carlo algorithm

• Bayesian estimation in union of subspaces

• Pixel-wise model selection but...

•Dependencies between pixels (spatial correlation)

⇒ MCMC method for global Bayesian inference

Moves within a subspace

−Updating bi,j and ri,j: standard Gibbs step (conditional distr.
→ mixtures of gamma distributions)

−Updating ti,j: Sampling from a discrete distribution (finite sup-
port)

Moves between subspaces

−Move from zi,j = 0 to zi,j = 1:
Proposal distribution designed to generate candidates in regions
of high prob. → High acceptance rate (good mixing properties)

Other parameters

−Updating β: standard Gibbs step (conditional distr. → inverse-
gamma)

−Updating α: Metropolis-Hastings step (non-standard conditional
distr.)

−Updating c: stochastic gradient (during burn-in) [3]

4. Results

Data acquisition

−Detection of a life-sized polysterene head at 325m

− 3 acquisitions : noon, 3p.m., and 8.pm

−Different acquisition times per pixel

Acquisition Time
300µs 1ms 3ms 30ms

Av. photon counts
noon 5.6 18.5 55.5 554.6
3 p.m. 4.1 13.7 41.0 408.9
8 p.m. 1.2 4.9 11.6 116.0

Empty pixels (%)
noon 2.79 < 0.01 0 0
3 p.m. 4.2 0.02 0 0
8 p.m. 61.8 52.2 40.4 2.2

Table 1: Average number of detected photons per pixel and proportion of
empty pixels for the different acquisitions.

Detection performance

π00 π10 π01 π11

noon

3ms
X-corr 79.9 20.1 8.9 91.1

Prop. algo. 99.9 0.01 10.8 89.2

1ms
X-corr 57.4 42.6 16.9 83.1

Prop. algo. 99.9 0.01 18.6 81.4

0.3ms
X-corr 59.6 40.4 39.1 60.9

Prop. algo. 99.9 0.01 20.4 79.6

Table 2: Detection performance (prob. in %)

Fig. 3: Example of detection (noon) results obtained by the standard (top) and

proposed (bottom) method.

Estimation performance

Fig. 4: Target ranges estimated by the standard (top) and proposed (bottom)

method.

Fig. 5: Target reflectivity (noon) estimated by the standard (top) and proposed

(bottom) method.

Fig. 6: Background levels (noon) estimated by the standard (top) and proposed

(bottom) method.
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