Advances in Energy Harvesting Communications:
Past, Present, and Future Challenges

Meng-Lin Ku, Wei Li, Yan Chen and K. J. Ray Liu

Abstract—Recent emphasis on green communications has en-deployment in any toxic, hostile or inaccessible environments,
gendered great interest in the investigations of energy harvesting etc. Hence, we can expect that energy harvesting in wire-
communications and networking. Energy harvesting from am- less networks is gaining more and more popularity in wide

bient energy sources can potentially reduce the dependence on licati ina f t . tal itori
the supply of grid or battery energy, providing many attractive applications ranging from remote environmental monitoring,

benefits to the environment and deployment. However, unlike the CONsumer electronics, to biomedical implants. It was reported
conventional stable energy, the intermittent and random nature by IDTechEx that the energy harvesting market was amounted

of the renewable energy makes it challenging in the realization yp to $0.7 billion in 2012 and was expected to exceki6
of energy harvesting transmission schemes. Extensive researchbi”ion by 2024 [4].

studies have been carried out in recent years to address this vVari ¢ f be utilized t |
inherent challenge from several aspects: energy sources and VollOUS ypes Of €nergy sources can be utiized 1o supple-

models, energy harvesting and transmission protocols, energy Ment energy supplies such as solar, wind, vibration, motion,
scheduling and optimization, implementation of energy har- electromagnetic (EM) wave [5]-[15]. The main difference

vesting in cooperative, cognitive radio, multi-user and cellular petween these renewable energy sources and the conventional
networks, etc. However, there has not been a comprehensweConst{jlnt battery lies in the fact that the scavenging power

survey to lay out the complete picture of recent advances and . fi . d limited i t ci t hich
future directions. To fill such a gap, in this article, we present IS tme-varying and fimited in most circumstances, whic

an overview of the past and recent developments in these areasStipulates a new design constraint on energy usage in the time
and highlight a number of possible future research avenues. axis. As a result, there is a need to revisit power management
Index Terms—Energy harvesting, cooperative networks, cog- policies in all of the existing wireless communication systems

nitive radio networks, multi-user interference networks, cellular SO that energy expenditure can efficiently adapt to the dynam-
networks. ics of energy arrivals during the energy harvesting period.

In the past few years, there have been significant research
progress on energy harvesting communications, and the main
focus is on the development of energy harvesting models,

With unprecedented growth in wireless data services, tpeotocols and transmission schemes in point-to-point com-
demands for power are constantly increasing, leading to a baunication systems [16]-[88]. Recently, considerable research
tery depletion problem for wireless nodes/devices [1]. Recesfforts have been extended toward energy harvesting network-
advance in green technology has attracted a lot of attentioig like cooperative networks, cognitive radio networks, multi-
from both academic and industrial research communities weer interference networks, cellular networks [106]-[147]. The
consider a new paradigm shift of power supply by decreasingtimization of the entire energy harvesting network becomes
the use of fossil fuels while increasing more renewable energymore difficult task due to the inclusion of multiple nodes.
sources in wireless communications and networking. In addition to data transmission, different network topolo-

To achieve this, energy harvesting has been proposedgéss pose various design considerations, and the energy con-
a viable solution that enables wireless nodes to scaverggamption in achieving these particular application purposes
energy physically or chemically from natural or man-madeannot be ignored. In cooperative networks, relay nodes need
phenomena [2], [3]. It provides us with many promising advae determine the signal relaying power in order to provide
tages and unique features for future wireless communicatidhe desired link reliability from the source to the destination
that cannot be offered by conventional battery or grid powemodes. In cognitive radio networks, secondary users need to
operated communications, including self-sustainable capalie aware of primary users’ activity via spectrum sensing.
ity, nearly permanent network lifetime, reduction of carbofio avoid the waste of the harvested energy, the interference
footprint, truly wireless nodes without requiring battery reamong users is required to be appropriately managed in multi-
placement and tethering to electricity grids, easy and faster environments. In cellular networks, harmony of harvested

energy and grid power in a hybrid energy source should also be
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Fig. 1. Types of energy sources.

in order to shed light on the future research trends. The goall) Solar/Light Energy SourcesOne of the most popular
of this survey article is to provide a comprehensive overvieambient energy sources is visible sunlight/light, and it is well
of the past development as well as the recent advancessindied and exploited in a wide variety of applications [3]—
research areas related to energy harvesting communicatif8is The light radiation is converted into electricity through
and networking. The rest of this paper is organized as followghotovoltaic cells. For outdoor environments, the solar power
In Section Il, we overview various energy sources and modeis.an obvious energy source for self-sustainable devices. While
Energy harvesting and transmission protocols are presentea ipotentially infinite amount of energy is provided by the
Section Ill. We review the energy scheduling problems and ogdnlight, the energy available to a device could fluctuate
timization frameworks of the existing works in Section IV andiramatically even within a short period in practice, and the
various design issues in energy harvesting communicatiosergy harvested level is influenced by many sophisticated
in Section V. The state-of-the-art research results in enerfactors, such as the time of the day, the seasonal weather
harvesting networking are discussed in Section VI. Sectigatterns, the physical conditions of the environment, the char-
VIl describes two application systems. We point out possibéeteristics of photovoltaic cells used, to name but a few [7].
directions of future research in Section VIII and conclude thigypically, the amount of solar-powered energy is in the order
paper in Section IX. of 100 mWi/cn?. Also, the solar radiation is dynamic, un-
Il ENERGY SOURCES ANDMODELS c_ontrollable and only partiglly prec_:lictable in some statio_nary
' circumstances, but unpredictable in general cases. For indoor

A. Types of Ambient Energy Sources environments, any illumination can be applied as the light

As shown in Fig. 1, the ambient energy sources can beergy source, while its power density is much lower than that
generally divided into four types: solar/light, thermoelectriof the solar power and depends on the illumination density
power, electromagnetic radiation and mechanical motion. Das well as the distance between energy sources and energy
pending on the ways to scavenge energy physically and chemsvesters.
ically, each kind of energy sources has unique characteristic®) Thermoelectric Energy Source$he thermoelectric ef-
in terms of predictability, controllability and magnitude, andect can be used to harvest energy [5], [6], [8]. Specifically, a
detailed descriptions of all these energy sources are providaatuit voltage can be stimulated between two conductors with
as follows. different materials when their junctions are kept at different



temperatures. In reality, such a temperature gradient can come
out of human bodies or machine conditions. The power
densities of thermoelectric sources are primarily determined by

Energy Harvesting Models

. . . -causal Statistical
the thermoelectric properties and the temperature difference of Koowlodes Knowlede
materials, and they are relatively low and merely range fror m—
! Deterministic Models ;
10 uW/ch to 1 mWicn?. [16]-[19] Stochastic Models Other Models
3) Mechanical Motion/Vibration Energy Source&lectric — ! Time
power can also be produced by extracting energy from me- uncorelaed correlated
. . . . . odels
phamgal motion anq V|brat|on thrqugh transduction me.thods, P TT——— P ——
including electrostatic, piezoelectric and electromagnetic [3]— |- Uniform Process 25] * Poisson Counting & Non-Negative
. . . * Poisson Process [26], [27] Uniform Process [17]
[6]. In the electrostatic method, the mechanical motion or |« exponential Process [28] + Two-state Markov Chain [30]-{34]
. . . P * ON-OFF Model [35], [36
vibration can cause the distance change and voltage variation oo Motk Chein [371, [38]
between two electrodes of a capacitor, generating the current
in a circuit. In the piezoelectric method, power is obtained by :Esg:;e;nfg ;f;;ggf;g’nqe[n?[]zgl
means of piezoelectric materials, while in the electromagnetic « Hybrid Energy Storage [40]
. . . ¢ Hybrid Energy Sources [41]
method, relative motion between a magnet and a metal coil

can stimulate an AC current in the coil, which is referred to
as Faraday’s law of induction. Generally speaking, the motigfg- 2- Classification of energy harvesting models.
and vibration can arise from random and uncontrollable natural
effects, e.g., wind and liquid flow [3], [6], [9], [10], or partially . )
controllable human actions, e.g., biood pressure, heart beatifig@dvance by the transmitters [16]-{19]. The success of the
and heel striking [11]. Different motion and vibration energ$nerdy management utilizing this model heavily depends upon
sources result in different power densities, which can sparP3 @ccurate energy profile prediction over a somewnhat long
wide range of values. tlme.hc.)nzqn, and modeling mismatch often occurs Whep 'th(.a
4) Electromagnetic Radiation Energy Sourcasarvesting prediction mterv_al becomes enlarge_d. I—_|ence, t_he deterministic
energy from EM radiation has attracted more and mofgodels are suitable _for th_e_ appllcatlor_]s with the energy
attention due to the broadcast nature of wireless commufRurces whose power intensities are predictable or vary slowly.
cations [3]-[6], [12]. According to short-distance or |ong_Nonetf_1eIess, by assurr_1ing that the non—cau_se_tl energy state in-
distance applications, the electromagnetic energy sources [ffnation (ESI) is acquired perfectly, deterministic models are
be divided into two categories: near-field and far-field. |HS€ful to characterize the optimal energy scheduling strategies,
near-field applications, EM induction and magnetic resonant@Provide insights into designing some suboptimal approaches
methods are usually exploited to generate electric power witfifitich only require the causal ESI, and to benchmark the
a distance of a wavelength, and thus, the energy transtdpdamental performance limits of energy harvesting systems.
efficiency in near-field applications is higher thar?/8fL3]. In 2) Stochastic Models:Recent attention has focused on
far-field applications up to a few kilometers, the EM radiatiorftochastic energy harvesting models in which the energy
appearing in the form of radio frequency (RF)/microwave sigenewal processes are regarded as random processes. The
nals, can be received by antennas and then converted to po@ihors in [20] present a stochastic solar radiation model
by rectifier circuits [14], [15]. The RF/microwave sourced0 describe the impact of clouds on the intensity of solar
could be beamforming signals emitted by a known transmittéddiation and the battery capacity recovery process. In [21]-
or ambient EM radiations from the surroundings. While thE24], the energy generation process is described via Bernoulli
power densities at the receiving antennas depend on the poltdels with a fixed harvesting rate under the assumption that
of available sources and the signal propagation distance, fRergy harvested in each time slot is identically and indepen-

kind of energy is often controllable and predictable. dently distributed (i.i.d.). Other uncorrelated energy harvesting
models applied in the literature include the uniform process

) [25], Poisson process [26], [27], and exponential process [28].

B. Energy Harvesting Models While these models are simple, they are inadequate to capture

Energy harvesting models play vital roles in designinthe temporal correlation properties of the harvested energy for
energy scheduling and evaluating the performance of energgst energy sources.
harvesting wireless communications. Fig. 2 shows the classi-To this end, a correlated time process following a first-order
fication of various energy harvesting models. Based on thescrete-time Markov model is adopted in [29] for modeling
availability of non-causal knowledge about energy arrivathe energy packet arrivals. In [17], the energy arrival and
at the transmitters, the models adopted in the literature @mount are modeled as a Poisson counting process in time
primarily divided into two classes: deterministic models [16]and a non-negative uniform random variable, respectively.
[19] and stochastic models [20]-[38], along with other speci#tt [30]-[34], energy from ambient sources is modeled by a
models [28], [39]-[41]. two-state (“GOOD” and “BAD”) Markov model to mimic

1) Deterministic Models: In deterministic models, full the time-correlated harvesting behavior, where in BAD state,
knowledge of energy arrival instants and amounts is knowo energy arrives, and in GOOD state, the energy quantum



arrival is a Bernoulli random process. In [35] and [36], the Except for the ambient or RF-based energy harvesting
energy generation process is modeled as a two-state (“Oibdels, there exists another special type of energy harvesting
and “OFF") correlated process, where the energy is harvestaddels, named hybrid models. The authors in [28] consider
with a constant rate in the on state and no energy is generadeldybrid energy replenishment model for which the wireless
in the off state. sensor can make use of two methods to replenish the battery.
The two-state energy harvesting model is a good approxinfane is to harvest energy from environment and store it in the
tion for the illustration of some energy sources. For exampleattery, and the other is to replace the battery directly. In order
harvesting from human motion in a body area network cdn model this hybrid replenishment, a Markov chain model is
be described by two states which represent the subjectpioposed to mimic the battery energy state transition. In [40],
either in rest or moving, and the weather states of solar powaehybrid energy storage unit which is composed of a super
harvesting may be shaded/cloudy and clear. Some papeapacitor and a battery is mounted on an energy harvesting
consider the use of generalized Markov models, where thransmitter. The former has good storage efficiency but limited
number of scenario states is more than two, each of whiehergy capacity, while the latter is capable of infinite size but
is governed by a conditional probability mass function tsuffers from inefficient storage. In [41], not only the renewable
describe the amounts of energy arrivals at each time instaergy sources but also the conventional energy sources such
[37], [38]. as diesel generators or power grid are considered in designing
In addition to the types of models, an appropriate choighergy harvesting systems to mitigate the variability of natural
of the underlying parameters in stochastic models such as €#€rgy generation.
transition probabilities of states and the probabilities of energy
arrival amounts at given states is another crucial issue. In real 1ll. ENERGY HARVESTING AND TRANSMISSION
applications, this should be closely related to real empirical en- PrROTOCOLS

ergy harvesting data measured by the energy harvester of eadjike the traditional battery-operated communications, the
communication node, and the energy harvesting capabilitydgergy of ambient energy sources available to energy harvest-
typically node-specific. Only few attention has been paid {ag communication nodes is time-variant and often sporadic
the construction of real data-driven energy harvesting mod@lgen though there is potentially an infinite amount of energy.
[7], [38]. In [38], discrete harvested energy is assumed fqhe energy expenditure is inherently subject teearrgy neu-
estimating the scenario parameters and the transition probafiliity constraintwhich stipulates that at each time instant, the
ities of the generalized Markov models, based on a suboptinggmulative energy expenditure cannot surpass the cumulative
moving average and a Bayesian information criterion. In [7gnergy harvested by that time, i.g,_, P, < ¢ | V;, where
a Gaussian mixture hidden Markov model is adopted to quapt-and P, are the harvested and the depleted energy at'the
tify energy harvesting conditions into several representatiyigne instant, and: could bet— 1 or ¢ which hinges on whether
states and to capture the dynamics of empirical solar powgEe present harvested energy can be immediately used or not.
data. Unlike the model in [38] which is constructed usingo smooth out the randomness effect, the scavenged energy
discrete energy regardless of the underlying distribution ghn be stored in an energy buffer, e.g., a supercapacitor or a
solar energy, this model is completely driven by real solgfttery, to balance the energy arrival profile and the energy
irradiance to determine the values of the parameters in ‘&@nsumption profile. But the capacity of the energy storage
underlying Gaussian distributions, followed by a step to Mafvices may be limited, and this results in the possibility
the continuous-time model into a discrete energy harvestigg energy overflow. In addition, energy spending for data
model, in which the Markov chain states are described by th@nsmission should also be aware of several practical consid-
state transition probability and the probability of the numbetrations such as the efficiency in storing energy, the energy
of harvested energy quanta at a given state. leakage from the storage device, the basic processing cost
3) Other Models:There exists other special models that dat communication nodes, the sleep-and-awake mechanism,
not pertain to deterministic or stochastic ones. For instanggc. Below, we first introduce three energy harvesting and
apart from the natural renewable energy sources, a new emefgnsmission protocols that address these considerations for
ing solution is to collect energy from RF signals which ar@atural ambient energy sources. Second, two energy harvesting

artificially generated by other external communication devicgsrotocols are presented for simultaneous wireless information
In this model, the harvested energy is predictable, and thed power transfer.

received RF power in free space propagation can be expressed

according to the Friis equation as follows [39]: A. Ambient Energy Harvesting and Usage

BA\? Three energy harvesting and transmission protocols are
P. = PRG,G, <47rd> ) (1) commonly used in the literature: Iarvest-use(HU), 2)
harvest-store-uséHSU), and 3harvest-use-storHUS) [37],
where ) is the wavelengthj represents the polarization loss[42]—[45]. Let B; and Z; be the amount of energy stored in
P, is the transmit power, and G, denote the transmitting the buffer and the processing cost at tié time instant,
and receiving antenna gains, respectively, diglthe distance respectively. The energy buffer evolution processes of these
between the transmitter and the receiver. three protocols are summarized in Table |, whérg™ =



TABLE |
ENERGY HARVESTING AND TRANSMISSION PROTOCOLS

Schemes [ Energy buffer evolution | Available energy |
Harvest-use (HU) No energy storage device P <|Y; - Zi| T
+
Harvest-store-use (HSU) Bij1 = [[(Bi —Zi — P) — BT + ,Bm] P, <|B; — Zi|*

+ +
Harvest-use-store (HU$; ;1 = “Bi [P+ Zi—Yi|T 4B Y — P — Zz-]ﬂ - ,@4 P <|Bi+Yi— 2"

min (max (0, ) , Bmax), Bmaz 1S the maximum capacity of available energy in the battery. Besides, the capacity of the
the energy buffer, anqjxj+ =max (0, ). HU scheme is upper bounded by that of the HSU scheme with
n unlimited energy buffer, i.eCry < Crsu (Bmax = 00).
?Xhile the processing cost and the energy storage inefficiency
ale present, the achievable rate of the HSU scheme can be

transmission occurs only when a sufficient amount tended by simply replacing|Y;] in the capacity formula

energy is acquirable to cover the processing cost, i.(\%',th ﬁl]E.[Y"]_]E[Zi]_ﬂQ' With a sleep-and-awake mechanism,
7, <Y, the ach|evable_ rate can bg |mproved by allowing for the
. HSU [37]: There is a storage device to gather the h gnergy harvesting communication nodes to choose to sleep.
vested energy which can be used only after it is stori'a general, the HUS scheme has a better achievable rate than

in the buffer at the next time instance. Thus, the node 'Qe HSU scheme, while the tWO schemes attain the same
active only if Z, < B;, and the available energy for dataoerformance a3, = 1. In particular, the performances of
transmissionP; is limited to | B; — Z;|T. The energy the HSU and the HU_S scheme.s. may be worse than that of the
buffer is evolved by assuming that onBY; harvested HU scheme wher, is not sufficiently large.
energy is charged in the buffer afg energy in the buffer
gets leaked in each time slot due to the inefficiency
storing energy, wher® < §; < 1 and0 < (3, < oc.
For an Ni-MH rechargeable batterg; ~ 0.7, and for a By leveraging RF signals, a new technology has been pro-
supercapacityd; > 0.95. Typically, the leakage factgs, Posed to delivery information and power simultaneously [46].
for a battery is very small, but that for a supercapacitddonetheless, it is impossible to realize simultaneous energy
is relatively larger [40]. harvesting and information delivery due to practical circuit
« HUS [42], [43]: The harvested energy that is temporarilgl€sign constraints. In practice, wireless energy harvesting can
stored in a supercapacitor can be immediately used, @@l operated in @me sharingmanner, in which the receiver
the remaining energy after processing and transmissigdes a portion of time duration for energy harvesting and the
is transferred to the energy buffer for later use. Thigmaining time for information processing, opawer splitting
protocol requires two energy storage devices, and tRgnner, in which the received signal power is divided into two
maximum available energy for transmissifhis subject parts for energy harvesting and information processing [47].
to |B; +Y; — ZiJ+- As compared with the power splitting scheme, the time sharing
. . : . . scheme is more attractive since the information receivers and
The information-theoretic capacity of energy harvestmgnﬁrgy receivers are separately operated with different power

Gaussian channels is investigated under the ideal conditionssg sitivities, and the gap between them could be as large as

P2 =0, 51 =1andZ; =0 [44], [45]. For the HSU scheme, dBm, e.g.,—50 dBm for the information receivers and10
the capacity with an unlimited energy buffer is equal tg?m for the energy receivers [48]

the classical additive white Gaussian noise (AWGN) channe . ; . . :
Some information-theoretic results regarding simultaneous

capacity with an average power constraint equal to the average . .
. L E[Yi] reless information and power transfer systems are reported
recharge rate, i.eCrsy (Bmax = o0) = 3log (1 + == )

in [49] and [50]. In [49], a fundamental tradeoff between
whereo. is the noise power, anB [-] takes the expectation. the rates of energy transfer and information transmission is
In [45], two capacity-achieving schemes, namely save-anstudied in several noisy channels by defining a capacity-energy
transmit and best-effort-transmit, are introduced. In the formgnction. Particularly, it is shown that in AWGN channels,
one, a portion of the total block length is used to save energie goals of maximum information rate and maximum power
and to obtain a sufficient amount of energy for sending theansfer efficiency are aligned, and the capacity-energy func-
remaining code symbols, while in the later one, the codn is a non-increasing concave function with respect to the
symbol is sent as long as there is sufficient energy in thginimum requirement of the harvested power. The authors in
battery. [50] study the information-theoretic results for the problem of

Furthermore, it is shown in [44] that the capacity-achievingformation and power transfer on a coupled-inductor circuit.
signalling is truncated i.i.d. Gaussian with zero mean arithe considered problem is a special case of a frequency
variance E[Y;] — ¢ > 0, wheree is an arbitrarily small selective fading channel, and the authors point out a non-trivial
value, and the truncation is owing to the limitation of théradeoff between the information and power transfer.

o HU: The communication node is directly powered b
energy harvesting systems, and there is no buffer
store the present harvested energy for future use. D

'B. Simultaneous Wireless Information and Power Transfer
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IV. ENERGY SCHEDULING AND OPTIMIZATION including transmission competition time, data throughput,

In the previous section, we have discussed various piitage probability, mean delay, message importance, quality
liminaries which are the first crucial step toward designingf coverage, generalized concave functions, grid power con-
energy harvesting communications. In addition to the availabimption, harvested energy, etc. In [18], [19], [51], [52], the
amount of harvested energy which rests on the characteristid'@nSmission competition time for a given data arrival profile is
energy sources and the adopted energy harvesting and trah§limized, and this objective is often accompanied with both
mission protocols, the performance of an energy harvestiﬁ@ergy_and data constraints. The data throgghput is maximized
communication system is determined by how to efficiently ugcording to Shannon Capacity formula in [17], [52]-[54],
the harvested energy available at hands. In contrast to battéryeoncave power-rate function in [55]-[57], the number of
operated systems, power management in energy harvesfigcessfully delivered bits or packets in [7], [29], [31] a
systems needs to harmonize the energy consumption with fHgcrete set of rates in [58]. The minimization of the capacity
battery recharge rate since the ambient energy may arrRigiage probability is considered in [59]-[62]. The mean delay
dynamically and sporadically. Hence, overly aggressive GFt€rionis used in [63] to minimize the transmission delay in
conservative use of the harvested energy may either run ouflf data queue. In [28], [34], the importance of reported data
the energy in a finite capacity battery (calledergy outage 'S utilized for t.he applications of sensor networks. The quality
or fail to utilize the excess energy (callediergy overfloy of coverage, in terms of the average nymber of eyents fthat

An illustration of the energy scheduling schemes and tf#€ correctly reported when they occur in the sensing region,
related design issues is shown in Fig. 3. In this section, W%co_n&dergd in [35]. The generalized concave functions are
first introduce the objectives for designing energy harvestiggnsidered in [64] and [65] to capture the performance and the
communications in the existing works. Second, we concentratghavior of the designed transmission policies. In the presence
on the design of energy scheduling policies for point-to-poiff @ hybrid power supply system, the objective of the grid
communications using natural ambient energy sources. TRRWEr consumption minimization is discussed in [27], [66],
current research approaches regarding these energy schedlfifly The harvested energy is maximized in [68] for a wireless
designs are two-foldbffline andonline, depending on whether POWer transfer system.
the knowledge of channel state information (CSI) and ESI is
a_vailablg non-causally or causally at the beginning of transmig- oOffline Energy Scheduling
sion. Third, we turn to discuss the energy scheduling problems

for RF energy harvesting in point-to-point communications. " °f Offine approaches, the full (causal and non-causal)
knowledge of CSl and ESI during the energy scheduling period

o is known to the transmitter side a priori. With the deterministic

A. Objectives energy harvesting models, energy scheduling, or equivalently
Several objectives have been considered in the literature fmwer allocation, optimization problems are commonly for-
designing point-to-point energy harvesting communicationsiulated to maximize a certain short-term utilities over a finite



time horizon and solved by convex optimization techniquesptimal transmission policy as well as the globally optimal

[17], [52], [55]. scheduling algorithm are investigated, in that the basic idea
Taking point-to-point energy harvesting communications iis to keep the transmit power or rate as constant as possible

fading channels as an example, the offline energy schedulithgring the entire transmission duration, while considering the

optimization problem is given as [17] causality constraints due to data and energy arrivals for the
T feasibility.
mafo (ps) 2 The data throughput maximization problem is discussed in
P20 i [17], [52], [53], [55]. The work in [17] attempts to maximize
subject to the throughput by a deadline by controlling the transmit power
! -1 under channel fluctuations and energy variations. From the
Ztipi < ZYi’ l=1,...,T; (3) K.K.T. conditions, it concludes that in the case of an infinite
i1 i—o energy storage capacity, the water level is monotonically

1 1 increasing, and if the energy at one epoch is spread to the
ZYZ- — Ztipi < Bpax, I =1,...,T—1, (4) next epoch, the water levels in two consecutive epochs are
i=0 i=1 the same. Moreover, when the water level changes, the energy
r%qnsumed up to that time instant is equal to the total harvested
energy. However, the monotonicity of the water level no longer
holds in the case of a finite storage capacity. A directional
water-filling algorithm is proposed to find the optimal power

adopted for illustrating energy storage and usage Yamelpre- allocation. Similarly, the problem of maximizing the data

sents the new arrived energy ahead of#tieepoch. The goal th_roug_h!out under a deadline constraint s Stgd.i?d in [55]
is to find the optimal power allocation during thei** epoch with finite energy storage capacity. The feasibility of the

for maximizing the sum of the utilitie (p;), while being power allocation that satisfies the energy causality and the

subject to the energy causality constraints in (3) and the finf@er%{ storage tconst:alzts IS .expltilnte(tjh gect).rln.tetrf'ca”%{ via a
battery storage constraints in (4). As the energy constrai g&siDie energy tunnel. Assuming that the ulliity unction 1S
are convex, the optimal power allocation can be found rictly concave and monotonically increasing with the power,

solving Karush-Kuhn-Tucker (K.K.T.) conditions, if the utiIityt e cumulative energy consumption profile of the optimal

function is concave. In general, this is true for widely used da'l.)gIICy must be piece-wise linear within this tunne| as time

throughput utilities, which are non-negative, strictly Conca\%rogresses. Through the Lagrangian dual analysis, it is shown

and monotonically increasing functions with respectpto that the solutions of the completion time minimization and the

Particularly, if Shannon capacity formulajog (1 + hup), is throughput maX|m|zat|on prot_)lgms_are |der_1t|caI: The pr_oblem
of energy allocation over a finite time horizon is considered

applied, whereh; is the channel gain for th&" epoch, the . =3 imize the throuah d the obtained
optimal power allocation behaves like the conventional watdf! [53] so as to maximize the throug pqt, an the ° t.alne
tructural results are analogous to [17], yielding a variation of

filling. Due to the concavity of the Shannon capacity formuld

it is suggested from Jensen's inequality that the water Ie\}QP so-called water-filling policy that follows staircase water

should be as flat as possible in time in order to maximize tlj]eevelg. In general, finding the optlmal dynamlc.water-flll'ln'g
el is not an easy task, and recursive geometric water-filling

data throughput. However, the water level may change 0\}8}’

time so that the imposed causality and storage constraints"c’fﬂﬂpmaches are proposed in [52] to effectively find the optimal

the energy usage are satisfied. While the offline scheduling\'\fglter level for the data rate maximization and transmission

unrealistic in real applications because of the need for no?]c_)mpletlon time minimization problems.
causal ESI knowledge, the properties of the optimal solutionsin addition to the aforementioned two utilities, the offline
provide useful insights into designing some practical/onlirepproaches are investigated by considering other different
algorithms. objectives and constraints that can satisfy application-specific
The transmission completion time minimization problem fodesign considerations [51], [58]-[60], [63]. In [63], throughput
offline scheduling has been considered in [18] and [19]. ptimal and mean delay optimal energy management policies
[18], an offline completion time minimization problem that alare studied for a sensor node with energy harvesting. It is
lows packet arrivals during transmission on energy harvestingsumed that the data and energy buffers are infinite, and
fading channels is solved by establishing an equivalence t@anecessary condition for stability of the data queue under
convex energy consumption minimization problem. In [19the energy neutrality constraint is proposed. The throughput
the optimal packet scheduling that adapts the transmissigotimal policy is the same as the capacity-achieving policy
rate according to the harvested energy and the traffic logd[44], while a greedy policy that removes the data in the
is proposed to minimize the transmission completion tingueue as much as possible is the mean delay optimal policy
in a single-user communication system. Two scenarios afaghe rate-power function is linear. In [51], the time instants
considered by assuming that the packets are ready at #mel the amounts of energy and data arrivals are assumed to
transmitter before the transmission starts or the packets arbee known beforehand. Under the QoS constraints as well as
during the transmissions. The structural properties of tliee energy and data causality constraints, the optimal data

where the entire scheduling period is partitioned into seve
epoches, each of which corresponds to the occurrence
channel state change, energy arrival or both, and‘thepoch

is denoted ag;, fori =1,...,T. Here, the HSU protocol is



transmission strategy is studied to minimize the transmissiomgredients of the MDP are statasc S, actionsa € A,
completion time for an energy harvesting node with a finiteewardsR, (s) € R and state transition probabilitid3, (s'| s).
battery capacity. It is shown that the optimal cumulative daéhe state could be a composite state of quantized channel
departure curve is a piecewise linear function, and the battemyd battery conditions, and the action is referred to as the
overflows happen only when the data buffer is empty. transmit power level or the amount of energy to be used. The

The authors in [59] study the optimal power allocation taffordable action at the states is limited to the corresponding
minimize the average outage probability, which is in generbhttery condition. Furthermore, the reward is a function of
non-convex over the transmit power in fading channels. Thiee states and the actions, which could be data throughput
optimal power profile is shown to be non-decreasing ov§f], [31], outage probability [70], symbol error rate (SER)
time and has a save-then-transmit structure, and the globdli], etc., and the state transition probability describes the
optimal solution with non-causal ESI is obtained by a forwartdansition probability from the current state to the next state
search algorithm. In [60], a weighted sum of outage probabilityith respect to each action. The goal is to find the optimal
is minimized for power scheduling under preset transmissi@olicy 7 (s) which specifies the optimal action in the state and
rates over a finite time horizon. This non-convex problem maximizes the long-term expected discount infinite-horizon
transformed into a convex one by applying high signal-to-noiseward V. (so) starting from the initial state, as follows:
power ratio (SNR) approximation. A piecewise power alloca-
tion structure is discovered for both infinite and finite battery
capacities, and a divide-and-conquer algorithm is proposed to
recursively find the optimal power allocation. A discrete-rate
adaption problem for optimizing the throughput is addressedwhere0 < a < 1 is a discount factor, and the long run average
[58] for energy harvesting wireless systems with infinite-sizebjective can be closely approximated by selecting a discount
energy buffers. factor close to one. The optimal long-term expected reward is

The optimal offline solution for a generalized concave utinq’;relevant to the initial state if the states of the Markov chain
function is studied in [64] and [65]. In [64], a generalized@re recurrent. Under this circumstance, the optimal solution
concave utility maximization problem as well as its generggtisfies the Bellman's equation [72]:
solution is investigated in energy harvesting wireless sensor
networks. Two applications, called sum-rate maximization andV (s) = max R.(s)+a Z Py ( (s )] . (6)

s'eS

ZaRw(e i‘|78i6877r(si)€“4a (5)

distributed estimation, are demonstrated, and the solutions a€
can be considered as the extension cases of the well-known
water-filling. In [65], it is shown that if the considered utilityStandard algorithms for solving the Bellman's equation in-
function is a concave non-decreasing function and the enefjyde value iteration, policy iteration and linear programming
reservoir is unlimited, the performance upper bound can b&2]- However, the main disadvantage of these algorithms is
achieved by a constant energy spending strategy that equ@d the optimization may be computationally cumbersome as
to the average energy replenishment rate. Motivated by tfit¢ number of states in the MDP increases even though the
insight to develop a simple energy management scheme, &Réimal policy can be implemented using a look-up table .
performance limits of sensor nodes with finite battery and dataThe online scheduling approaches using the MDP have been
buffers are analyzed, which shows that the optimal utility ca@xtensively investigated in the literature. In [17], an optimal
be asymptotically achieved, while keeping battery dischar@gline policy is proposed by using dynamic programming
and data loss probabilities low. to maximize the throughput by a deadline constraint. Due
to the curse of dimensionality in the dynamic programming,
several event-based suboptimal policies in response to the
changes of fading levels and energy arrivals are investigated.

The online approaches only account for the causal knovBome structural results are explored for optimal transmission
edge of the CSI and ESI, or some statistical knowledge of tpelicies in [7], [31], [53] and [56]. In [31], a Markov decision
channel and energy harvesting dynamic processes. When ghgblem is formulated for an energy harvesting source node
transmitter only has the causal ESI, the time average of tiwth an infinite energy queue to decide whether to transmit
amount of harvested energy, called energy harvesting ratepisdefer the transmission in each time slot. With a simple
a common figure of merit for designing the online algorithmncorrelated energy arrival assumption, the objective is to
[69]. On the other hand, with the stochastic energy harvestintaximize the expected number of successfully delivered pack-
models to acquire the statistical knowledge, stochastic opdits over a Gilbert-Elliot channel, and the optimal policy has a
mization techniques, e.g., Markov decision processes (MDmjreshold-type policy depending on the channel state and the
are appealing solutions to maximize the long-term utilities @nergy queue length. Besides, the structural properties of the
relevant optimization problems [17], [31], [53], [56]. maximum throughput and the corresponding optimal policy

We take the design of online power control schemes are provided in [53]. Specifically, the optimal throughput and
point-to-point energy harvesting communications as an eke optimal power allocation are concave and non-decreasing,
ample. Based on stochastic energy harvesting models, ragpectively, in the battery states, if the throughput-power
MDP design framework can be formulated, and the mafanction is concave.

C. Online Energy Scheduling



The authors in [56] discuss a monotonic structure for thede to convey the noisy measurements to the receiver is
policy with multiple transmit power levels; that is, if a highermddressed in [75], and the objective is to minimize the estima-
transmit power level is preferred to a lower one at somnt®n error covariance in Kalman filtering with random packet
battery levels, then it will continue to be a preferred one &sses over fading channels. From dynamic programming, a
a higher battery level. While this structure may be intuitivelthreshold policy is developed for binary energy allocation
reasonable, it does not always hold in general cases, altholsylels, and a suboptimal gradient algorithm is proposed for
such cases are rare. The threshold and monotonic structwesputing the threshold. In [32], a modified policy iteration
are also discussed in [7] for a solar-powered communicalgorithm is proposed for the recent application of energy-
tion system with adaptive power and modulation schemdgrvesting active networked tags in order to optimize the long-
based on a realistic energy harvesting model. With an accéssn communication reliability. Considering the fact that the
control mechanism and a maximum power constraint for tlemergy harvesting process evolves slowly compared to the
transmitter, an achievable rate maximization problem is cagtannel fading, the authors in [42] propose a dual-stage power
as an MDP with continuous battery states in [54], which imanagement approach, in which the outer stage schedules the
different from the discrete battery-and-power assumption power for the use in the inner stage so as to maximize the
the aforementioned works. The value function is approximatéahg-term average utility, while the inner stage optimizes the
as a piecewise linear function to efficiently solve the problesommunication parameters to maximize the short-term utility.
and to obtain the continuous power allocation. Learning the underlying stochastic knowledge of the energy

In general, the offline algorithms outperform the onlin@arvesting models must be an imperative but nontrivial step
algorithms due to the availability of the non-causal knowledgeward the implementation of the MDP-based energy manage-
of energy arrivals and channels, and the author in [73] analyzeent policies. This is especially difficult for some unstable
the performance of an online algorithm by evaluating itsnergy sources or in some deployment scenarios. Some works
competitive ratio which is defined as the maximum ratio diave been conducted to address this issue. Some non-real-time
the gain between the optimal offline algorithm and the onlirend real-time approaches have been proposed by utilizing the
algorithm over possible sequences of energy arrivals apest energy harvesting profiles to learn the randomness of the
fading coefficients. For the general case of arbitrary sequenassergy generated by harvesting sources [7], [26], [29]. In [7],
the competitive ratio is equal to the total number of time slots data-driven stochastic energy harvesting model is learned
over which the achievable rate is optimized. beforehand based on the historic energy harvesting records

The online transmission schemes are designed using othathered by a communication node, and by applying the
utility functions in [28], [34], [35], [59] and [70] rather than discounted MDP, a data-driven transmission policy is proposed
the data throughput. In [28], a threshold-based approachtdsdecide the optimal action at each time instant according to
investigated for single-hop transmission over a replenishali®e past and present observations of solar irradiance.
sensor network, and there exist optimal thresholds to maximizeAs an alternative, Q-learning can be used to find the optimal
the average reward rate in terms of message values. The augisiicy for any given MDP without requiring the model of the
in [34] attempts to maximize the long-term importance valugnvironments. It works by learning an action-value function
of reported data, and a low-complexity balanced policy thaihich ultimately gives the long-term expected reward for
solely adapts to the energy harvesting states is proposedatgiven action at a given state rather than using the state
balance the energy consumption and energy harvesting.tdansition probability to carry out the long-term expected
[35], energy-efficient transmission strategies are developed fevard statistically. In [26], two reinforcement learning al-
body sensor networks with energy harvesting to maximize tgerithms, Q-learning and speedy Q-learning, are applied to
quality of coverage through an MDP design framework. lderive real-time transmission policies by learning the joint
[59], optimal and suboptimal online power allocation methodaindomness of data arrivals and energy arrivals generated by
are proposed to minimize the outage probability by applyinfle sensor and the energy source, respectively. Similarly, a
dynamic programming. In [70], an MDP-based power alldearning theoretic approach is proposed in [29] to learn the
cation policy is proposed to minimize the rate outage perfasptimal transmission policy by tentatively performing actions
mance. Therein, a threshold structure and a saturated structii@ observing immediate rewards for point-to-point energy
are discovered for the optimal policy and the correspondimgirvesting communications, and it does not require any a

expected outage performance, respectively. priori stochastic information on the data and energy harvesting
Still, some works address the design issues of onlimgarkov processes in the MDP.

transmissions from application aspects [32], [42], [74], [75].

In addition to the transmit power, the energy allocation for o .
sensing is considered in an energy harvesting sensor node JithENergy Scheduling in Wireless/RF Energy Harvesting

a finite data buffer in [74]. With the objective of maximizing The energy scheduling problems in RF energy harvesting
the expected total amount of transmitted data in the MD&e totally different from those in offline and online scheduling
the sensor needs to decide the amount of energy dedicdtedause the RF harvested energy is predictable and stable.
to sensing and transmission by taking into account the datereover, the energy scheduling for RF energy harvesting is
buffer, battery, channel, and energy harvesting rate status. Tptimized only over a single period of time without being
problem of energy allocation for an energy harvesting sensarbject to energy causality constraints. Hence, the main focus
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in the existing works is to optimize the time duration otapacity. The optimal offline policies follow a two-phase
information processing and energy harvesting. In [61], tHeansmission structure, where in the first phase, the optimal
authors investigate a point-to-point wireless link, in whickransmission is on-off, while in the second phase, continuous
the receiver decodes information and harvests energy from trensmission is optimal. Finally, an online algorithm based on
transmitter with a fixed power supply at the same time. Thhe closed-form of the offline solution is proposed by using
optimal mode switching rule at the receiver is proposed the statistical knowledge of energy arrivals to approximate the
achieve various trade-offs between the minimum informatium of causal energy profiles.
outage probability (or the maximum ergodic throughput) and The work of [81] generalizes the power consumption model
the maximum average harvested energy. Similarly, a poitie-mimic other hardware/software-dependent energy consump-
to-point wireless link is considered in [76]; however, théion sources, e.g., channel access and stream activation, in mul-
energy harvesting receiver makes use of harvested enetigle parallel AWGN channels with multiple data streams. With
to transmit information to the transmitter. Thus, the optimdhis model, the authors study the optimal resource allocation
time allocation between the wireless energy reception aptbblem to maximize the capacity via integer relaxation and
information transmission is derived to maximize the averagkial decomposition and give a boxed water-flowing graphical
throughput. representation for the asymptotically optimal solution. The
Considering the two kinds of simultaneous information angsult can be considered as a generalized interpretation of
energy transfer methods, power splitting and time sharing, ttiee directional water-filling in [17]. The effects of various
authors in [77] derive the average achievable rate. In [68], theergy overheads, e.g., battery leakage currents and storage
receiver neither transmits data signals to the transmitter rinefficiencies, on discrete-rate adaption policies of energy
decodes information from the transmitter. Instead, the authdwarvesting nodes are examined in [58]. A general framework
emphasize a problem that the receiver feedbacks the CSithat maximizes the transmission rate for energy harvesting
the transmitter for energy beamforming so as to harvest themmunications with an imperfect battery is introduced in
energy as much as possible. The time duration of chanf@f]. Different from the previous works, the cumulative en-
estimation at the receiver is optimized to maximize the amoueitgy for data transmission is bounded within minimum and
of energy harvested by the receiver. In [78], a self-sustainalmf@ximum energy curves, which can be used to model the
orthogonal frequency division multiplexing (OFDM) receiveeffects of the battery with finite size and energy leakage,
is proposed by recycling the cyclic prefix of the receivetespectively. In fact, the constant energy leakage can be
signals to extract the power. The feasibility conditions for sel&lternatively interpreted as the constant operation (or circuit)
sustainability are analyzed in terms of power consumption pbwer to keep the node awake. Hence, the optimal offline
the receiver. An OFDM two-way communication link withtransmission strategies in [57] and [80] are similar.
hostile jamming is studied in [79], wherein the receiver can An energy harvesting transmitter with hybrid energy storage
decode information and harvest energy from the receivdich is comprised of a perfect super-capacitor and an inef-
source signal and jamming signal using the power splittidfigient battery is studied in [40]. The storage capacity of the
method. The transmit power and power splitting ratio wemgliper-capacitor is finite, whereas that of the battery in infinite.
jointly optimized to maximize the sum throughput of thdn contrast to the previous works, the transmitter has to manage

forward and backward links. the internal dynamics of the storage unit. The obtained solution
of energy allocation generalizes the directional water-filling

V. DESIGNISSUES INENERGY HARVESTING algorithm in [17]. Furthermore, when a linear processing cost
COMMUNICATIONS in time is taken into account, a directional glue pouring

In this section, we consider other design issues, as showr?lﬂor'thm in [82] can be applied to find the optimal solution.

Fig. 3, for point-to-point communications that have not begg ESI and CSI Uncertainty
discussed in the previous section, including imperfect batteries

ESI and CSI uncertainty, upper-layer protocols, hybrid powerTh.e syccessful implementation .Of energy harvesting com-
supply, etc. munications relies on accurate estimation of energy and chan-

nel profiles or the relevant statistical information. However,
_accurate estimation of these profiles in real-world is typically
A. Imperfect Battery Storage and Other Power Consumptiqtysily and even impractical, and it inevitably causes perfor-
In previous works, the transmit power is the unique soureeance degradation due to estimation error. Thus, new algo-
of energy consumption; however, in some cases, other soura#iems have been designed to accommodate these estimation
of energy consumption at the transmitter may dominate owemrors [24], [37], [54], [83], [84]. In [54], the energy prediction
the power radiation. For example, the circuit processing powetror which is modeled as a discrete uniform distribution
could be larger than the transmit power for short-range cors- considered in the design of MDP-based optimal power
munications. These design considerations, including the eilocation. In [83], a weather-aware transmission approach
ergy leakage of imperfect batteries, are addressed in [57], [58],proposed based on a weather-conditioned moving average
[80], [81]. In [80], throughput-optimal transmission policieprediction algorithm to mitigate the uncertainty.
that consider the non-ideal circuit power are studied for energyBy modeling the energy harvesting process as a hidden
harvesting wireless transmitters with infinite battery storadéarkov chain, the authors in [37] investigate the impact
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of imperfect state-of-charge knowledge, i.e., the amount afcross-layer scheduling scheme among three layers: source
energy stored in the buffer, and design policies to cope withte control at the transport layer, flow rate and multipath
such uncertainty, where the state-of-charge is only knowauting optimization at the network layer, and duty cycling
to the extent of a rough quantization. It is concluded thaiptimization at the MAC layer.

the knowledge of the state of the energy harvesting process

is more critipal than the perfect knowledge of the state-ofy Hybrid of Energy Harvesting and Power Grid

charge. Partially observable MDP (POMDP) can be used to

find the optimal strategy when the network state information D;Jentto t:‘he ran(;orr]: natur;em Ofnientteirgg/ arrlv?rI]s, |tI |Is ha\r/(\j trod
is incomplete, e.g., unknown CSI. guarantee the QOS of a communication system solely powere

by the harvested energy. Furthermore, the communication ser-

In [24], this work finds the outage-optimal power trans-: . .
. - . . es may be interrupted when the energy exhaustion problem
mission policies with automatic repeat request, and the C f

is partially observable only through ACK/NACK feedback’ U™ Recently, hybrid energy supply, where the energy

messages. The POMDP framework is cast to find the Op%c_)mes from a power grid and an energy harvester, has emerged

mal solution, and two computationally efficient suboptima?s an alternative solution to this challenge. In a hybrid energy

spponches e proposed sccordng o he el siae of HEPY, S/ 1L 15 esseni o dosin enerey Seredi
channel and the solution of the underlying MDP. In [84], g'9 9y P

simultaneous information and power transmission system pgwer grid, while ensuring the service requirements [27], [66],

studied under imperfect CSI at the transmitter. A robust beal[né?]]' In [66], the task is to minimize the power grid energy

forming problem is formulated to maximize the Worst-cas%onsumptlon subject to harvested energy and data causality

harvested energy for an energy receiver while satisfying tﬁgnstraunts in fading channels, and in particular, the considered

. . . : roblem is the dual problem of throughput maximization when
rate requirement for an information receiver, and the probl . -
. g e . all data packets are arrived before transmission. The structures
is efficiently solved by relaxed semidefinite programming.

of power allocation are also analyzed in some special cases,
e.g., infinite battery capacity, grid energy only or harvested
C. Upper-layer Protocol Designs energy only, etc.

Due to the heterogeneity of energy availability among !N [67], the design goal is to minimize the power con-
nodes, new upper-layer algorithms are needed to adapt to $HgPtion of the constant energy source for transmitting a
dynamic of energy harvesting and to ensure the satisfacti@en number of data packets within a finite number of time
of network performance such as low latency, low packet lod8tervals. In [27], the average energy consumed from the

and high packet delivery rates. In [85], several medium accd¥@Ver grid is analyzed for two strategies having different

control (MAC) protocols such as time division multiple acces¥@ys Of using the harvested energy. In [62], the authors

(TDMA) and ALOHA are revisited for wireless sensor netinvestigate transmission scheduling problems in hybrid energy

works with energy harvesting. A performance tradeoff betweSHPPIY Systems under a save-then-transmit protocol, where a
a delivery probability, which measures the capability of a MAEaVINg factor is used to control the ratio of harvesting time
protocol to successfully deliver data packets of any node, af@d transmission time. If the CSI is unknown, an outage
a time efficiency, which measures the data collection rate aPbPability minimization problem is formulated to find the
fusion center, is analytically investigated using Markov mod2Ptimal saving factor. For the case that the transmitter has
els. For the purpose of reducing sleep latency and balancif}§ CS!. @ battery energy consumption minimization problem
energy consumption among nodes, two duty-cycle schedulitfgconsidered for jointly optimizing the bit allocation and
schemes are proposed in [86] according to the current amolfft Saving factor via dynamic programming, while ensuring
of residual energy only or more aggressively based on Hi€ transmission service requirement. Moreover, stochastic dy-

prospective increase in the residual energy. The propod®¥yNic Programming is applied when only causal information

schemes have lower end-to-end delay and a higher pacRegvailable.

delivery ratio than a static duty-cycle scheduling scheme.

In [36], closed-form expressions for the probabilities of VI. ENERGY HARVESTING NETWORKING
event loss and average delay are derived using a Markovn the past decade, the spirit oboperation among nodes
model which integrates the energy harvesting and event arribals fostered tremendous progress on the development of
processes. Based on analytical results, the sizes of the enemgpgern wireless communications. Several paradigm-shifting
harvester and the capacities of the energy storage and tisehnologies such as cooperative communications and cogni-
event queue are optimized. In [87], data collection ratéise radios have been proposed for wireless networks in the
and data routing structures are designed for wireless sensp#it of cooperation to overwhelm the limitation of the two
under energy causality constraints. A centralized algorithm gsecious resources, power and spectrum, and the performance
proposed to jointly optimize the data collection rate and tHess caused by wireless fading channels.
flow on each link. Moreover, two distributed algorithms are However, energy harvesting wireless networks differ from
proposed with or without predefined routing structures. Onthe traditional counterparts in that the nodes experience dis-
few attention has been paid to cross-layer optimization in etinct energy harvesting capabilities and efficiencies and the
ergy harvesting communications. In [88], the authors develaghievable performance gain is further influenced by the
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Fig. 4. A taxonomy of energy harvesting networking.

availability of energy resource. Therefore, the design of enerdy Cooperative Energy Harvesting Networks
harvesting networks must be revisited not only to account
for the performance gain, probably resulted from information, Cooperative communication that pertains to a paradigm of
spectrum or energy cooperation, but also to adapt to tigormation cooperation has gained much interest to mitigate
temporal variation of battery recharge processes. Additionalifie wireless channel fading and to improve the reliability of
it necessitates to reconsider new transmission schemes Vidieless links by exploiting the spatial diversity gains inherent
multi-user networks and cellular networks, e.g., multiple a#? multi-user environments [148]. This can be achieved by
cess channels, broadcast channels, and multi-user interferedltsving nodes to collaborate with each other with information
channels, and to study their fundamental performance limft@nsmission and thus forming virtual multi-input multi-output
when energy harvesting is applied. A taxonomy of enerdMIMO) systems without the need of multiple antennas at each
harvesting networking is shown in Fig. 4. In this sectiorfjode.
we will review the existing energy harvesting approaches in Considering the fact that wireless cooperative nodes are
various basic network configurations, including cooperativsften subject to space limitation to utilize a large battery
networks, cognitive radio networks, multi-user networks, anglith long lifetime, energy harvesting technigues have been
cellular networks. introduced for self-sustainable cooperative relays to not only
improve the throughput and reliability by harnessing the spatial
diversity but also promise perpetual network lifetime without
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requiring periodic battery replacement. Owing to the new Energy harvesting from RF signals is naturally applicable
imposed time-varying energy constraints, several fundamentalcooperative networks as it facilitates information relaying.
issues like relaying protocols in [89], [90], power allocatiohe main design concern in this direction is to determine an
in [91], [71], relay selection in [92], two-way relaying inappropriate time sharing or power splitting ratio that enables
[93], etc., have been revisited for various cooperative netwatthe best tradeoff between signal relaying and energy harvest-
configurations. In general, energy scheduling problems in dog. In [47], two relaying protocols of time sharing and power
operative communication become more complicated becawsgditting are considered for two-hop relay networks, where the
the energy usage over time needs to make a tradeoff betweelay harvests energy and decodes information from the RF
the link performance of each hop and the battery recharge raignal of the source. The analytical expressions for the outage
at each node. probability and the ergodic capacity are derived to quantify
1) Two-Hop Cooperative Communicationsthe energy the effect of various parameters such as energy harvesting
harvesting for two-hop cooperative communications has begime, power splitting ratio, source-to-relay distance, etc. The
studied in the literature [71], [89]-[91], [94], [95]. The authorsvork of [96] studies a three-node cooperative network, where
in [89] study power allocation for classic three-node decodée relay node is operated in two modes: harvesting energy
and-forward (DF) relay networks under deterministic energyom the RF signal of the source node or relaying the source’s
harvesting models. The throughput maximization problegmata to the destination. A greedy switching policy, where the
over a finite horizon of transmission blocks is investigatesecond mode is executed only when the relay has sufficient
by considering the cases of delay-constrained traffic or nenergy to ensure decoding at the destination, is investigated by
delay-constrained traffic. For the latter case, a form of energging Markov chain to characterize the outage performance.
diversity is explored with delay tolerance. By deploying a halfA two-user cooperative network, which includes two source
duplex relay, a joint time scheduling and power allocationodes and one destination node, is considered in [97], and
problem is addressed in [91] for a two-hop relay networthe source nodes rely on the RF energy harvesting from the
with an energy harvesting source. Two design objectives afestination node and may cooperate by using either DF or
considered: short-term throughput maximization and transmisetwork coding methods. The system outage probability is
sion completion time minimization, where a directional wateminimized by optimizing the time allocation. Also the design
filling algorithm found in [17] is served as a guideline forof RF energy harvesting is extended to relay channels with
deriving the optimal solutions. multiple antenna configurations to reap the benefit of spatial
The problem of throughput maximization in a two-hoprocessing in the current literature.
amplify-and-forward (AF) relay network is addressed in [90], In [98], a joint antenna selection and power splitting scheme
where both the source and the relay nodes have the capabilityproposed to determine the optimal power splitting ratio
of harvesting energy. The offline and online power allocaticemd the optimized antenna set which is engaged in signal
schemes are designed for the two scenarios with causalrelaying. The relay networks in the presence of multiple
non-causal knowledge of harvested energy and channel gagmirce-destination pairs are studied in some existing works.
respectively. For the offline case, an alternative convex seatoh[99], relay transmission strategies are proposed for one-
algorithm is proposed to find the optimal power allocation atay relay networks, wherein multiple source nodes com-
the source and the relay. For the online case, the problemmianicate with their respective destination nodes via a RF
solved by an MDP framework, and a threshold property &nergy harvesting relay. The outage probabilities are analyzed
explored under an on-off switching power control scheme. for two centralized power allocation schemes, equal power
In [71], an MDP-based relay transmission policy is foundnd sequential water filling, and a distributed auction-based
to minimize the long-term SER of a DF cooperative systemower allocation scheme. A cooperative network with multiple
The asymptotic SER and its performance bound are analyzgalirce-destination pairs and an energy harvesting relay in
to quantify the diversity gain and the energy harvesting gaioensidered in [100], where the relay exploits the DF protocol
which reveals that full diversity is guaranteed if the probabilitgnd harvests energy from the RF signals of the sources.
of harvesting zero energy quantum is zero. In [94], stabilithhe outage probability is analyzed by considering the spatial
analysis is conducted for a non-cooperative protocol and smdomness of user locations. Furthermore, the cooperation is
orthogonal DF cooperative scheme in an energy harvestimgdeled as a canonical coalitional game, and a grand coalition,
network with three nodes. The optimal transmission powerghich means forming a larger cooperative group is better than
found to maximize the stable data throughput. The authasting alone, is preferred in high SNR regimes. The authors
prove that the cooperative transmission scheme is a beire[101] use non-cooperative games to derive power splitting
solution in the case of poor energy arrival rates, whereggtios for all relays, each of which is dedicated to one source-
the direct transmission scheme is suitable for high energgstination pair. Each link is regraded as a strategic player
arrival rates. In [95], optimal relay scheduling is investigatewtho aims at maximizing its own data rate. The existence
to decide whether the energy harvesting relay helps the eneggyl uniqueness of the game are analyzed, and a distributed
harvesting source to forward information or transmits its owallgorithm is proposed to achieve the Nash equilibriums.
information. The problem is formulated as the MDP and the 2) Relay Selection:Relay selection is a pragmatic tech-
POMDP by considering the long-term link coverage qualitgique to reduce the complexity for multiple relay-assisted
as the utility. networks. Unlike the conventional relay selection schemes
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where the source node selects the relay which provides thefinite-capacity energy storage devices using quadratic Lya-
best equivalent SNR among all relays, relay selection in enengynov and weight perturbation optimization techniques.
harvesting communications needs to further take the energyDue to the heterogeneity and the variability of energy
harvesting condition at each relay into account. This is becaus®vesting conditions, recent advances in energy harvesting
if a relay is often selected, its battery may drain out quicklpommunications also stimulate the interest of researchers in
due to a slow recharge rate. Some existing works have focusgwther dimension of cooperation, termed energy cooperation.
on the cooperative systems with multiple relays, which allowa [106], energy cooperation is studied for several basic net-
the relay nodes to leverage the energy harvesting opportunityrk structures, including relay channels, two-way channels,
In [92], voluntary AF relays are applied to assist in forwardingtc. In this context, nodes can cooperate with each other to
signals from a source node to a destination node. The SERtm@insfer energy from one of the nodes to the other over wireless
the system is analyzed under energy constrained and engsgysical channels despite the possible energy transfer loss.
unconstrained cases, and asymptotic analysis is conducted for

the cases when the SNR or the number of relays is Iar%e.
In [69], joint relay selection and power allocation schemes’
are proposed to maximize the throughput of a cooperativeCognitive radio has been deemed as a key enabling tech-
network, wherein an energy harvesting source communicafé¥0gy to resolve the problem of spectrum scarcity due to the
with a destination via multiple energy harvesting relay nodé@yer increasing demand for wireless services and applications
exploiting an AF protocol. An offline optimization problem[149], [150]. In cognitive radios, secondary users are allowed
is formulated as a non-convex mixed integer nonlinear prt® share the spectrum owned by primary users with one-
gram and solved by Bender's decomposition. Two onlingay cooperation or full cooperation according to the design
but suboptimal schemes, namely the energy harvesting regéiteria of spectrum overlay or spectrum underlay, which
assisted scheme and the naive scheme, are proposed with@p@bles us to use the spectrum resource in a more flexible
complexity. In [102], the authors consider a two-hop relagnd efficient fashion. Recently, incorporation of the concept of
network with multiple relay nodes which can harvest RFOOperative relaying into cognitive radio networks has opened
energy opportunistically from the source or other relays, at a new research direction which aims at the cooperation of

they propose the optimal time allocation for the source amgformation transmission and spectrum sharing among nodes
the relays by solving a linear program. [151]. In this new paradigm, the secondary user acts as a relay

for improving the primary user’s throughput, and in return, the

3) Two-Way and Multi-Hop Cooperative Communicationgarimary user provides the secondary user with more spectrum
Relevant design issues are also extended to two-way and mult#age opportunities [152].
hop relay networks [33], [93], [103]-[105]. In [93], the authors Energy harvesting has been also applicable to cognitive
investigate the optimal transmission policy for energy harvesgadios, creating a fascinating new research line on green
ing two-way relay networks. Through an MDP framework¢ognitive radio networks. In this context, the secondary users
a long-term outage probability is minimized by adapting there capable of harnessing green energy to support the subse-
relay transmission power to the wireless channel states, battgagnt dynamic spectrum access of the licensed bands owned
energy amount and causal solar energy states. An interestiygthe primary users. Since the available energy is random
saturated structure for the outage probability is revealed in highd intermittent, many research issues that have been well
SNR, and a saturation-free condition that guarantees a zdryeloped in the conventional cognitive radio networks, e.g.,
outage probability is proposed. Furthermore, when only partigppectrum sensing, spectrum management and handoff, spec-
state information about the relay is available at the sourt@m allocation and sharing, are required to be reconsidered
node, the transmission scheduling problem is cast as a POMDRenhance the network reliability. In such a network, several
in [33]. In [103], a cooperative automatic repeat requesonflicting objectives need to be considered due to sporadic
(ARQ) transmission protocol for multiple energy harvestingnd unstable energy sources and limited spectrum resource: (1)
sensor nodes is investigated to maximize the throughput, aststaining the knowledge of spectrum activity; (2) protecting
it is shown that the proposed scheme improves the systpnmary users from interference or collision ; (3) maximizing
throughput by balancing the sensor nodes’ energy consumptiba transmission opportunity of secondary users, and (4)
to match their own battery recharge rates. A non-regeneratharvesting, spending or conserving energy. Hence, a common
two-way relay network which includes two source nodes, guestion arises as to how the secondary user efficiently uses
relay node equipped with multiple antennas, and a RF enetftfpg harvested energy over time to achieve these objectives.
harvester is considered in [104]. The objective is to maximize 1) Spectrum Sensing and Channel Acce3$ie design
the sum rate of the two-way relay network by designing relayf spectrum sensing and channel access policies has been
beamforming under a transmit power constraint at the relagdressed in the recent works [107]-[111]. In [107], optimal
and an energy harvesting constraint at the RF energy harvestegnitive sensing and access policies are investigated to max-
An iterative algorithm based on semi-definite programminignize the data throughput for a secondary user with an energy
and rank-one decomposition is proposed to find the optin@leue. By formulating the problem as an MDP, the secondary
solution. In [105], power allocation, routing, and schedulingser can either remain idle or execute spectrum sensing based
decision are investigated for a multi-hop network powerezh the belief of primary activity and the amount of energy in
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the battery. A similar scenario is considered in [108] by takingrimary users. An energy threshold is applied to determine the
the constraints of energy causality and collision into accoumtansmission mode, and a POMDP framework is used to select
and a theoretical upper bound on the maximum achievalbthe action of sensing the channel or staying idle according to
throughput of the secondary user is derived as a function tbk battery state and the belief about the activity of the primary
the energy arrival rate, the temporal correlation of primanyser.
activity, and the detection threshold of spectrum sensing. In [115], a robust transceiver design is investigated for wire-
By treating the spectrum occupancy state as incomplééss information and power transmission in underlay multiple-
information, POMDP design frameworks are formulated tmput multiple-output (MIMO) cognitive radio networks with
find the optimal transmission policies in some works [109thannel uncertainty. An alternative optimization approach
[110]. In [109], a secondary user with energy harvesting chetween the transmit covariance matrix at the secondary
pability can opportunistically access the channels licensed fognsmitter and the preprocessing matrix at the secondary
the primary users. A channel selection criterion is proposeditformation-decoding receiver is proposed to maximize the
maximize the average spectral efficiency of the secondary usem harvested power at energy harvesting receivers, while
by exploiting not only the knowledge of channel occupanayuaranteeing the interference constraints at the primary re-
and channel gains but also the dependency of the acti@asvers and the required mean square error performance at the
of sensing and accessing channels on the energy harvestiagondary information-decoding receiver.
probability. Based on this criterion, a POMDP framework 2) Cognitive Relays and Cooperatio:he idea of coop-
is developed to find the optimal and myopic policies fogrative communication is also integrated into cognitive radio
determining which channels to be sensed. In [110], the joiirt the recent literature, which enables the secondary user to
optimization of spectrum sensing policies and detection thresibtain more transmission opportunities by serving as a relay
olds is solved by a constrained POMDP for maximizing thi@r the primary transmission. Consequently, there exist trade-
expected total throughput of an energy harvesting secondaffs between the time durations of energy harvesting, data
user subject to the constraints of energy causality and collisiearansmission and cooperative transmission for the secondary
To reduce the complexity, the problem is then converted intger. The authors in [116] consider a cognitive radio system in
an unconstrained POMDP by identifying the feasible set efhich an energy harvesting secondary user with an unlimited
detection thresholds that satisfy the collision requirement. Asiergy buffer can obtain more transmission opportunities
an extension, the work in [111] jointly optimizes the sensingy optionally cooperating with a primary user. The optimal
duration and the sensing threshold to maximize the averagstions, in terms of energy harvesting time and relaying power,
throughput of the secondary network. are analyzed for cooperative and non-cooperative modes to
Different from the cognitive networks that use naturahaximize the achievable throughput of the secondary user.
renewable energy sources, a secondary user with RF enesgy.ordingly, an optimal cooperation protocol which involves
harvesting can utilize not only an idle channel to transmi two-level test is proposed to make the optimal decision.
data packets but also a busy channel to recharge its batteryn [117], joint information, energy and spectrum cooperation
Several works have been devoted to taking advantage itween the primary system and the secondary system is
waiting time of secondary users in order to obtain more enerfjyestigated in cognitive radio networks to achieve better
and transmission opportunities. The authors in [112] proposggectrum utilization, in which the secondary transmitter can
cognitive radio network architecture that enables a secondage the energy transferred from the primary transmitter to help
transmitter to harvest RF energy from its neighboring primarglay signals to the primary receiver as well as serve its own
transmitters and to reuse the spectrum of the primary netwofkceiver through spectrum sharing. In [118], a secondary user
By introducing interference guard zones and energy harvestimgintains a relaying queue to store unsuccessfully delivered
zones, transmission probability and the corresponding sgaimary packets, and a queuing delay constraint is imposed
tial throughput of the secondary users are derived based fgpa primary user to stimulate cooperation with the secondary
a stochastic-geometry model of user locations. Finally, thger which employs Alamouti space-time coding schemes. A
throughput is maximized by jointly optimizing transmissionhroughput maximization problem for the secondary user is
power and density. then solved under the constraints of the stability of all data

In [113], the authors consider a cognitive radio netWOI'Jjueues and the primary end-to-end queuing delay.
in which the secondary user can transmit packets or harvest

RF energy when the selected channel is idle or occupied ) .

by primary users, respectively. A channel access policy §& Multi-User Energy Harvesting Networks

proposed to maximize the data throughput of the secondaryMulti-user wireless networks have been widely studied in
user via the MDP, and based on a policy gradient methdtie literature. In contrast to the single-user paradigm, one of
an online learning algorithm which does not require mod#he most distinctive features in the multi-user paradigm is
parameters is proposed to adapt the channel access actthesmutual interference created from multiple users to one
by observing the environments. In [114], depending upon tla@other. To guarantee the QoS among users, it becomes very
sensing results of the primary channel, the secondary user aaportant to deal with the interference by carefully utilizing
operate in overlay or underlay transmission modes, remdire harvested energy, which is in general very limited, in
in sleep mode to conserve energy, or harvest energy from thalti-user energy harvesting networks. Typically, there are
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four types of multi-user paradigms: multiple access channetsnong users. Based on this, an iterative algorithm is proposed
broadcast channels, multicast channels, and multi-user inter-find the globally optimal policy. An extension of [125]
ference channels, and a review of the state-of-the-art reseandth a finite capacity battery is later investigated in [126]. In
in this field is provided in the following. this case, the total transmit power sequence can be found by

1) Multiple Access ChannelsA two-user multiple access the directional water-filling algorithm, and there exist cut-off
system is investigated in [119], and each user is able power levels to determine the power allocation among users
harvest energy from nature and have a fixed amount Iy iteratively executing the directional water-filling. The work
data to be transmitted to the receiver. A generalized iteratif27] considers the problem of transmission error and energy
backward waterfilling algorithm is proposed to characteriz#eficiency for a downlink broadcast network with energy
the maximum data departure regions of the transmitters, amarvesting sensor nodes. By designing the transmission period,
based on the obtained region, a decomposed transmisstuee broadcast policies, called reliability-first, throughput-first
completion time problem is solved by finding the poweand eclectic, are proposed to make a tradeoff between the
and rate policies via convex optimization. Some works haveliability and the throughput.
focused on the scenario with multiple users [58], [120]-[122]. The fairness issue among users is considered in [128], and
In [120], a multi-user system in multiple access channels tise goal is to optimize the proportionally fair throughput by
studied from the information-theoretic viewpoint, and it isllocating time slots, power, and rate to multiple receivers. The
shown that coordination among distributed nodes is neededomt design is decomposed into two subproblem problems in
order to satisfy energy transfer constraints. The performarteems of power allocation and time allocation and solved by
limits of a multiple access network with energy harvestingiconvex optimization techniques. In [129], the authors discuss
nodes are studied in [121]. By applying a compound Poisstite problem of rate allocation and precoder design for a multi-
dam model to capture the dynamics of the battery, an uppever MIMO broadcast system. Each user is equipped with an
bound on the sum rate is derived, and the necessary conditiensrgy harvesting device, and the power consumption at the
for the optimal power policies and the associated algorithr®¥= front-end and decoding stages is included in the design of
are proposed to maximize the achievable sum rate for bdke optimal transmission policies with or without perfect CSI
finite and infinite capacity of batteries. and battery knowledge.

In [122], the authors investigate a multiple access wirelessBroadcast channels with RF energy harvesting are studied
sensor network with two kinds of sensors, energy harvestiing[48], [130]. In [48], the authors study a three-node MIMO
nodes and conventional nodes. Two performance criterlmpadcast system, where one receiver harvests energy and
namely k-outage duration and-transmission duration, alonganother receiver decodes information from the signals sent by
with their the performance bounds, are proposed and analyzettansmitter. When the receivers are separated, a rate-energy
to evaluate this hybrid network. Furthermore, cost-effectivegion is characterized for the optimal transmission strategy to
hybrid deployments for sensor nodes are studied to optimiaehieve different trade-offs. When the receivers are co-located,
these two criteria. In [58], a system with multiple ratethe rate-energy regions are characterized for time sharing and
adaptive energy harvesting nodes in which one is selected fmwer splitting schemes. The authors in [130] extend the
opportunistic transmission is investigated, and a throughpwerk [48] to the scenario with multiple information receivers.
optimal joint selection and rate adaption rule is proposed. A cooperative beam selection scheme is proposed to select

Some works consider an issue that multiple access usarsnaximum number of active beams for data transmission
are replenished by the downlink RF signals from transmittewghile satisfying the energy harvesting requirement, and the
[123], [124]. In [123], an access point first transmits thperformance tradeoff between the average harvested energy
signal to multiple users for energy harvesting, and then thad the sum rate is analyzed.
users exploit the harvest energy to transmit information to the3) Multicast Channels:Multi-cast energy harvesting net-
access point using the TDMA scheme. The sum throughputwérks, where a transmitter sends common information to
the network is maximized by optimizing the time allocatiomultiple receivers simultaneously, are studied in [131]-[133].
of the access point and all users under the constraints Infthese existing works, it is assumed that the receivers can
average harvested energy values. In [124], the authors consigigrer decode information or harvest RF energy. By following
a wireless powered communication network in which a powthe time switching protocol, a novel mode switching method is
station first replenishes multiple users via beamforming amdoposed based on random beamforming techniques, and it can
each user transmits information to a common sink node lghieve better power and information transfer performance, as
applying the TDMA scheme. A joint design of beamformingompared with a periodic receiver mode switching method.
and user’s time allocation is proposed to maximize the sufm MIMO multicast system, consisting of one source node
throughput. and two subsets of destination nodes referred to as information

2) Broadcast Channels:In [125], the authors study adecoders and energy harvesters, is studied in [131]. The source
transmission completion time minimization problem for aprecoder and the information decoders are jointly designed
energy harvesting transmitter which has a preset numberaafcording to two criteria. One is to minimize the worst mean
data packets to be delivered to each user. The structusgliare error under source transmit power and harvested energy
property of the optimal total transmit policy is analyzed andonstraints. The other is to maximize the total harvested energy
a cut-off power policy is revealed for splitting the total poweat the energy harvesters under source transmit power and worst
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mean square error constraints. cellular networks, e.g., macrocell, the energy consumption
The work [132] extends the design to the case when thédrem power grid can be effectively reduced by equipping
exists an eavesdropper. With channel uncertainties, a roboase stations with energy harvesting modules. To gain these
secure transmission scheme is proposed to maximize thenefits, it is essential to develop intelligent mechanisms, e.qg.,
worst-case secrecy rate under transmit power and harvestesburce allocation, user scheduling, cell planning, etc., which
energy constraints. In [133], two problems are investigated ¢an adapt to energy harvesting capabilities at base stations. We
address a physical-layer security issue that information senwil discuss the relevant issues for designing energy harvesting
the information receivers can be eavesdropped by the eneegjlular networks in this subsection.
receivers. In the first problem, the secrecy rate for the infor- 1) Resource Allocation and User Scheduliribhe authors
mation receiver is maximized subject to individual harvestdd [43] investigate resource allocation strategies, in which
energy constraints at energy receivers, while in the secolfi¢ transmitter can access a hybrid energy supply system
problem, the weighted sum of harvested energy is maximizednsisting of an energy harvester and a conventional power
subject to a secrecy rate constraint at the information receivegid. They seek to minimize the total energy cost at the
4) Multi-User Interference ChannelsThe works [134] transmitter, instead of energy consumption, subject to an
and [135] attempt to design energy harvesting transmissiontage constraint, and the problem is cast as mixed integer
schemes in two-user interference channels. In [134], a shagrtogramming. The authors in [82] investigate energy har-
term sum-throughput maximization problem is investigatesting broadband communications with multiple flat-faded
with two energy harvesting transmitters. The optimal powétbcarriers by considering both transmission and processing
allocation is found by iteratively executing modified versiongnergy. Convex optimization problems as well as the properties
of single-user directional water-filling algorithm. Example®f the corresponding optimal solutions are formulated with
of interference channels with known sum capacities such #ee different objectives, including maximization of data
asymmetric interference channels and very strong interferedbeoughput by a deadline, maximization of residual energy in
channels are examined. In [135], considering an MIMO intethe battery by a deadline, and minimization of transmission
ference channel, each receiver can either decode informat@snpletion time for a given amount of data.
or harvest RF energy. According to the receiving modes,In [139], power and subcarrier allocation algorithms are
the optimal transmission strategies and the performance,digsigned for an OFDMA downlink network with a hybrid
terms of maximum achievable rate and energy or rate-ene@jjergy harvesting base station. By taking into account circuit
tradeoff, are studied for four scenarios. Some works exteRfiergy consumption, a finite energy storage capacity, and a
the design tak -user interference channels. The aim of [138ninimum required data rate, an offline problem is formulated
is to minimize the total transmit power by jointly optimizingto maximize the weighted energy efficiency of the network
user beamforming and power splitting under both SINR ar@hd solved by using Dinkelbach method. A suboptimal event-
energy harvesting constraints, and a decentralized algorithnélf&zen algorithm which is triggered by the changes of channel
proposed based on second-order cone programming relaxatféding and energy arrival is proposed by utilizing the statistical
In addition to the existing power splitting, the authors i@verage of the time duration of each event. With the knowledge
[137] propose several time splitting schemes such as tinfd-data traffic and energy harvesting profiles, a grid power
division mode switching to maximize the system throughptiiinimization problem for a downlink cellular network is
of multi-antenna interference channels subject to power af@nsidered in [140] by turning off some base stations and
energy harvesting constraints. In [138], interference is recycl@gsigning resource block. A blocking probability is derived
to replenish the battery. To achieve this goal, the idea of int@nd served as the QoS constraint for the problem, and a two-
ference alignment and receive antenna selection is exploitecstage dynamic programming which in turn determines the on-
divide the received signals into two orthogonal subspaces @f state and the resource allocation of the base stations is
signal and interference which are used to decode informatiBfPposed to reduce the computational complexity.
and harvest energy, respectively. Also the rate-energy region'he authors in [141] consider delay-optimal transmission
is characterized for a random selection scheme in this workontrol and user scheduling for downlink coordinated MIMO
systems with energy harvesting capability. The transmission
control is operated with a longer timescale, while the user
scheduling is adaptive with a shorter timescale. The consid-
The explosive growth of wireless multimedia services isred problem is modeled as a POMDP framework, and a
anticipated to tremendously increase energy consumptiondistributed method is proposed to reduce the implementation
cellular networks. In response to the trend of reducing tlmplexity by exploiting approximate dynamic programming
carbon footprint and the operation cost of cellular networkand distributed stochastic learning. RF energy harvesting is
clean and sustainable energy sources have been deemed taldeapplied in cellular networks to sustain the data transmis-
an alternative source, other than the conventional power griipn of mobile users. The authors in [142] study a multiple
to power cellular systems. In particular, to meet future traffieccess system in which a base station broadcasts RF energy
demands, a very dense deployment of small cells which haeerecharge the batteries of multiple uplink energy harvesting
smaller cell coverage and require less transmit power makessers. The information and energy transmission can be imple-
realistic to enable self-powered base stations. In conventionaénted either in time division duplex or frequency division

D. Energy Harvesting Cellular Networks



18

duplex, and online rate and power allocation strategies aeplethora of objectives will be connected together to form a
proposed to maximize the achievable rates. huge intelligent network in an 10T system.

The idea of energy cooperation has also been applied fodn addition to the problems of transmitting, storing, and
cellular networks in [41], in which energy transfer is allowegrocessing mass information, how to power these 10T nodes
between two base stations to help compensate for the eneiggygnother challenging problem that needs to be addressed.
deficiency problem one another due to either lower generatisnmany applications, nodes are placed in hard-to-reach, haz-
of renewable energy or higher traffic demand of users. @&dous or toxic areas, and thus, they cannot be connected to
paradigm of joint energy and information cooperation is foungrid power. Even if these nodes can be powered by batteries,
in [143], and base stations in coordinated multi-point systerhattery replacement may be difficult and expensive. Energy
can share their energy powered by hybrid power supplies tarvesting techniques should be good alternatives to prolong
cooperatively transmit data signals to mobile terminals.  the lifetime of 10T systems. In fact, if the node’s energy

2) Cell Planning: A cellular network planning problem is requirement is low enough [154], it is possible for 10T nodes
discussed in [144] by considering the use of renewable eneiigyexclusively rely on power harvested from ambient energy
sources and the concept of energy balancing. The desifurces like solar, indoor light, wind, vibration, motion, RF
framework aims at maximizing the total cost of installatiorgignals, etc. for perpetual operation.
connection, and consumed power from electric grid, subject2) Green Cellular Infrastructures and Systenmfth the
to the constraints of a minimum QoS requirement and maaturing of standardization and the on-going deployment for
power outage probability. The authors propose a heuristlte fourth-generation wireless networks, research communities
two-phase planning approach, namely, QoS-aware base statibrpoth academic and industry are now on the tracks of
deployment and energy balancing connection, for this NEAvisioning and developing the fifth-generation (5G) wireless
hard problem. The problems of cell deployment and powtgchnologies. One of the typical and commonly accepted
allocation are jointly studied in [145] to improve the energgoncepts in 5G systems isGteeri. Green means not only
sustainability and efficiency for two-tier green cellular netto improve the network energy efficiency but also to decrease
works which are composed of small cells and macrocelléie dependency on electric grid. Energy harvesting techniques
The authors in [146] consider heterogeneous cellular néan be applied to 5G cellular networks with several potential
works in which base stations, solely powered by self-sustainadvantages.
energy harvesting modules, across tiers are associated witfrirst, in conventional cellular networks, eighty percent of
different energy harvesting rates, energy storage capacity &i@rgy is consumed at the base stations, and network operators
deployment densities. The availability, which is defined as ti§@n reduce the grid power and ramp up more clean and
fraction of time that a base station is turned on, is theoreticallgnewable energy sources like solar and wind. The use of
analyzed using random walk theory and stochastic geomefeen sites can also lower the carbon footprint and electricity
In [147], an uplink cellular network is overlaid with randomlybill of running cellular networks. Second, solar and wind-
deployed power stations for wirelessly recharging mobile usétgwered base stations can speed up the revolution of mo-
via microwave radiation, and based on a stochastic geoméde communications in developing counties like Africa and

model, the network deployment is investigated under an outd#élia, especially in some rural areas which lack power grid
constraint of data links. infrastructures for base stations to connect. The new base

stations can use solar panels to generate and store solar power
during the daytime, with the support of battery or backup wind
turbine at night. It is estimated that twelve solar panels are
1) Internet of ThingsDriven by the vision of smart cities enough to run an off-grid base station and even occasionally
and homes, internet of things (IoT) is an emerging technologiansfer redundant power to the electric grid [155]. By 2014,
to add ubiquitous internet capability to every objective whicthe percentage of these off-grid base stations in developing
not only collects data from the surrounding environments aw@untries is around% and a growing demand for non-diesel-
interacts with the physical world but also provides servicdmsed mobile communications infrastructures is foreseen in the
to exchange data with other objectives for autonomous resear future [155].
soning and decision making. Things in the IoT can refer Pike Research stated that more than 390,000 green base
to a wide variety of heterogeneous objectives such as hostations will be deployed from 2012 to 2020 worldwide
appliances, sensors, machines, portable devices, etc. TH&ES5]. Many network operators and providers have engaged
are many applications of 10T, which can be divided into thia studying and deploying green base stations over the past
following domains: transportation and logistics, healthcaréew years. Sony Ericsson and Motorola have considered the
smart environments, and personal and social applicatiamse of solar energy for rural base stations several years ago
[153]. For example, by using 10T, goods in supermarkets cft67]. In Africa, more than a quarter of Vodacom’s base
automatically contact its provider for logistics managementstations in Lesotho are now powered through a combination of
As another example, the deployment of sensors can monisaiar and wind energy [158]. Telekom has started operations
the environmental pollution or emergency events and improweé the first wind turbine-powered base station in Eibesthal
the automation by taking an immediate action according to Lower Austria [159]. After the great Japan earthquake,
real-time data aggregation in the 10T. One can thus expect thliT DOCOMO has started field testing for disaster-proof,
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environmentally friendly base stations which are equippedly on multiple energy sources for simultaneously recharging
with solar panels, high-capacity rechargeable batteries aheé battery, e.g., solar and vibrational sources for wearable
green power controllers [160]. In particular, these base statiatevices.
can still be run with renewable energy if the commercial power 4) Robust Designs with Imperfect Knowledde: most
gird is destroyed during a disaster. of existing works, the knowledge of ESI and CSI, which
could be presented in terms of data profiles in deterministic
models or parameters in stochastic models, is assumed to be
perfectly known to energy harvesting-based communication
Many research efforts have been devoted to the developmeydtems. However, in practice, the ESI knowledge is time-
of energy harvesting communications and networks. In th@rying, and it is difficult to predict and estimate because
previous sections, we have given a comprehensive overvigithe dynamic activities of energy sources or the mobility
on the energy harvesting problems and the pertinent cutting-nodes. Although the CSI can be acquired by performing
edge approaches proposed by various researchers. In #pgnnel estimation, frequent estimation is not allowed due to
section, we discuss the future research directions which requig limited energy resource. Other knowledge in the networks
research community to pay attention to in order to desigfcludes primary user’s activity in cognitive radio, battery
more advanced and reliable energy harvesting communicatirage conditions among nodes, etc. Undoubtedly, imperfect
systems. knowledge at nodes will degrade the achievable performance,
1) Fundamental Limits of Energy Harvesting Channel Caand the degradation should be seriously taken care of in
pacity: Currently, channel capacity with energy harvestinghe design of energy scheduling, particularly when the time
transmitters is known for AWGN channels with unlimitedduration is long. Hence, robust designs are needed to deal
size battery and binary channels with a unit-sized battery. Tigth the possible imperfection in energy harvesting networks.
energy harvesting channel capacity in general noisy channelg) Multiple Antennas Techniquesn many applications,
for any finite-size battery remains an open research probletie transmit power level of wireless energy harvesting nodes
Further research is necessary for characterizing the fundamigntow due to the limited amount of harvested energy, and
tal performance limits of energy harvesting communicatioris necessitates energy-efficient transmission schemes which
and networks from the information-theoretic aspect. can effectively compensate for path loss and channel fading
2) Energy Harvesting at Receiver Sid&o far in the in wireless environments. Multiple antenna technologies like
literature, most of the energy scheduling problems are studiggamforming, space-time coding, distributed antennas, mas-
for energy harvesting transmitters, and signal processingsite MIMO, can be exploited to save energy consumption
the receivers is assumed to be powered by constant battesesodes. Furthermore, in RF energy harvesting, multiple
or cost-free. To realize fully self-sustained communicatioantennas can be utilized to improve the efficiency in capturing
systems, new design frameworks are needed to further embrRee energy when the energy is transferred from one node
energy consumption at the receiver sides which apply enengy another. The inclusion of multiple antennas in energy
harvesting for signal reception and decoding. Moreover, comarvesting networks provides new research dimensions and
munications between any two nodes are two-way, rather thepportunities in energy optimization problems.
one-way, in most wireless applications. In such a scenario,6) Security in RF Energy Harvestindn RF energy har-
each node can act as either a transmitter or a receiv@sting networks, the operating power sensitivity of energy
depending on the allocated resource, in order to exchangeeivers is typically much larger than that of information re-
messages with each other over the same physical medium.céivers. Hence, only the receivers which are in close proximity
alleviate the energy outage problems, energy usage for the twothe transmitter are scheduled for RF energy harvesting,
nodes should be balanced, for example, by transferring eneggyd there may be situations that energy receivers act as
from one node to the other or appropriately scheduling tle@vesdroppers to overhear the messages sent to information
transmission period. It is interesting to study the receiver-sideceivers. This near-far problem gives rise to a challenging
energy harvesting and its impact on the network performangghysical-layer security issue, and further research is needed
3) Energy Harvesting Models and Combination of Heterogée reach a compromise among the performance metrics of
neous Energy SourceBnergy harvesting models are essentianergy harvesting requirement, transmission secrecy and QoS.
to the implementation of energy scheduling for communicatidn addition, the existing transmission protocols such as time
nodes. While a wide variety of models have been adoptedswitching and power splitting are primarily designed for the
the existing works, there is a need to investigate models whitthdeoff of information extraction and energy harvesting, we
are carefully verified through experiments and specific to eanbed more investigation on new transmission protocols to
kind of energy sources, since distinct energy sources mpsoperly incorporate the security concern, for example, by
posses very different energy arrival characteristics. Besid@groducing artificial noise in the transmitted signals or sending
the recharge process can deviate from an i.i.d. assumptaxira jamming signals.
and its average recharge rate is time-varying for a long time7) Energy Harvesting Networks with Multiple Nodes:-
duration. A practical model that integrates several heteroghough extensive studies have been carried out on energy
neous energy sources is another worthwhile research directi@vesting communications, there are still some challenges
because energy harvesting-based communication nodes mvagn attempting to optimize the performance of an entire

VIIl. FUTURE RESEARCHDIRECTIONS
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network consisting of multiple energy harvesting nodes. Rpo] J. A. R. Azevedo and F. E. S. Santos, “Energy harvesting from wind
search issues that are needed to be further explored in thisand water for autonomous wireless sensor nodé&T"Circuits, Devices

. . . . . . Syst, vol. 6, no. 6, pp. 413-420, Jun. 2012.
direction include (a) routing, (b) multi-hop relaying, (c) rela;tll;

. - . . L. Xie and M. Cai, “Human motion: sustainable power for wearable
selection, (d) cooperative spectrum sensing and sharing, (€)electronics, "IEEE Pervasive Compytvol. 13, no. 4, pp. 42-49, Oct.

energy, spectrum and information cooperation from game- 2014.

. . . . " . ] H. J. Visser and R. J. M. Vullers, “RF energy harvesting and transport
theoretic perspective, (f) multi-user interference mitigation ar{ for wireless sensor network applications: principles and requirements, ”

management, (g) distributed energy scheduling, (h) cross-layer proc. IEEE vol. 101, no. 6, pp. 1410-1423, Jun. 2013.
optimization, (i) deployment of green small cells, etc. [13] S. Kim, R. Vyas, J. Bito, K. Niotaki, A. Collado, A. Georgiadis, and
M. M. Tentzeris, “Ambient RF energy-harvesting technologies for self-
sustainable standalone wireless sensor platforn®spt. IEEE vol. 102,
IX. CONCLUSIONS no. 11, pp. 1649-1666, Nov. 2014.
[14] I. Krikidis, S. Timotheou, S. Nikolaou, Z. Gan, D. W. K. Ng, and
Nowadays, the demand for power by wireless communica- R. Schober, “Simultaneous wireless information and power transfer in
tions is continually rising due to the widespread applications pm;dle(;z_cﬁrgm’\:‘g‘\'lc%olzSVStemleEE Commun. Magvol. 52, no. 11,
of wireless data services. Energy harvesting techniques hg“® ¢ Rr. valenta and G. D. Durgin, “Harvesting wireless power: survey of

been proposed as a revolutionary solution toward green com- energy-harvester conversion efficiency in far-field, wireless power transfer
munications. In addition to being environmentally-friendly, _Systems, "IEEE Microw. Mag, vol. 15, no. 4, pp. 108-120, Jun. 2014.

h . ilities facili he impl . BlP] S. Reddy and C. R. Murthy, “Profile-based load scheduling in wireless
energy harvesting capabilities facilitate the implementation energy harvesting sensors for data rate maximizatidarot. IEEE Int.

truly untethered mobile and ubiquitous communication sys- Conf. Commun.pp. 1-5, 2010.
tems. In this survey, we presented a comprehensive overvigfl O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmis-

: - . . sion with energy harvesting nodes in fading wireless channels: optimal
of energy harvesting communications and networks. To this policies, " IEEE J. Sel. Areas Communol. 29, no. 8, pp. 1732-1743,

end, characteristics of different energy sources, fundamental sept. 2011.
concepts about energy scheduling approaches, various reseffhF. M. Ozcelik, G. Uctu, and E. Uysal-Biyikoglu, “Minimization of

; ; ot transmission duration of data packets over an energy harvesting fading
challenges and topics on energy harvesting commumcaﬂonschannel’ *IEEE Commun. Lettvol. 16, no. 12, pp. 1968-1971, Dec.

were discussed. Next, we provided detailed discussions aboutogo.
the state-of-the-art research contributions in various netwdt] J. Yang and S. Ulukus, “Optimal packet scheduling in an energy
architectures which exploit the concept of cooperation among harvesting communication system|EEE Trans. Communvol. 60, no.

. . . . . 1, pp. 220-230, Jan. 2012.
information, spectrum and energy domains, 'nCIUdmg COOFQD] D. Niyato, E. Hossain, and A. Fallahi, “Sleep and wakeup strategies in

erative, cognitive radio, multi-user, and cellular networks. solar-powered wireless sensor/mesh networks: performance analysis and
Finally, possible application systems and several directions for oPtimization, "IEEE Trans. Mobile Compytvol. 6, no. 2, pp. 221-236,

f h . inted. Th h . . Feb. 2007.
uture research were pinpointed. € comprenhensive overvi B. Medepally, N. B. Mehta, and C. R. Murthy, “Implications of energy

provided in this survey hopefully can serve as guidelines profile and storage on energy harvesting sensor link performarRegc
for further development of more realistic energy harvesting IEEE Glob. Commun. Confpp. 1-6, 2009. _ o
networks [22] N._ I_\/Ilchelush K. Stamatlog, and M Zorzi, “On optimal transmission
’ policies for energy harvesting devices,Proc. IEEE Inf. Theory and
App. Workshoppp. 249-254, 2012.
[23] N. Michelusi and M. Zorzi, “Optimal random multiaccess in energy
harvesting wireless sensor networksPfoc. IEEE Int. Conf. Commun.
pp. 463-468, 2013.
624] A. Aprem, C. R. Murthy, and N. B. Mehta, “Transmit power control
' . policies for energy harvesting sensors with retransmission&EE J.
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