Atypicality for Vector Gaussian Models

Elyas Sabeti, Anders Høst-Madsen

- Dept. of EE, University of Hawaii

Partly funded by NSF grant CCF 1434600
Motivation
Motivation

- BIG Data generates huge amounts of data
 - Medical sensors
 - Genetics
 - Surveillance: NSA
 - Environmental sensors
Motivation

- BIG Data generates huge amounts of data
 - Medical sensors
 - Genetics
 - Surveillance: NSA
 - Environmental sensors
- Often data is just stored, not being used
Motivation

• BIG Data generates huge amounts of data
 – Medical sensors
 – Genetics
 – Surveillance: NSA
 – Environmental sensors

• Often data is just stored, not being used

• What to use data for?
 – Statistics of “typical” data, “averages”
 – But perhaps what is interesting is the unique, rare event deviating from the norm, the atypical data
 – Art, scientific work (“genius”), entrepreneurship
Motivation

• BIG Data generates huge amounts of data
 - Medical sensors
 - Genetics
 - Surveillance: NSA
 - Environmental sensors

• Often data is just stored, not being used

• What to use data for?
 - Statistics of “typical” data, “averages”
 - But perhaps what is interesting is the unique, rare event deviating from the norm, the atypical data
 - Art, scientific work (“genius”), entrepreneurship
Motivation

• BIG Data generates huge amounts of data
 - Medical sensors
 - Genetics
 - Surveillance: NSA
 - Environmental sensors
• Often data is just stored, not being used
• What to use data for?
 - Statistics of “typical” data, “averages”
 - But perhaps what is interesting is the unique, rare event deviating from the norm, the atypical data
 - Art, scientific work (“genius”), entrepreneurship
Applications

- Medical
 - Most sensor data is indicative of normal
 - The rare event is indicative of decease

- Other
 - Gambling fraud or malfunction
 - Credit card fraud
 - Accounting, IRS
 - Computer network intrusion
 - Environmental monitoring
 - Electric power grids
 - Plant monitoring
Anomaly Detection with Universal Source Coding
• Atypical data can be thought of as anomalies
 - But more general application: data discovery
Anomaly Detection with Universal Source Coding

- Atypical data can be thought of as anomalies
 - But more general application: data discovery

- Looking for “unknown unknowns”
 - Need universal approach → information theory/universal source coding
Anomaly Detection with Universal Source Coding

- Atypical data can be thought of as anomalies
 - But more general application: data discovery
- Looking for “unknown unknowns”
 - Need universal approach → information theory/universal source coding
- Aim
 - Theoretically well-founded approach to anomaly detection with information theory
Is Information Theory Useful?
Is Information Theory Useful?

- Is information theory fundamental?
Is Information Theory Useful?

- Is information theory fundamental?
 - Entropy $H(X)$ → Shortest codelength
 - Mutual Information $I(X;Y)$ → Channel capacity
Is Information Theory Useful?

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

THE recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist\(^1\) and Hartley\(^2\) on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain physical or conceptual entities. These semantic aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual message is one selected from a set of possible messages. The system must be designed to operate for each possible selection, not just the one which will actually be chosen since this is unknown at the time of design.
Is Information Theory Useful?

- Is information theory fundamental?
 - Entropy $H(X) \rightarrow$ Shortest codelength
 - Mutual Information $I(X;Y) \rightarrow$ Channel capacity
Is Information Theory Useful?

- Is information theory fundamental?
 - Entropy $H(X) \rightarrow$ Shortest codelength
 - Mutual Information $I(X;Y) \rightarrow$ Channel capacity
- Minimum Descriptive Length (MDL)
Is Information Theory Useful?

• Is information theory fundamental?
 - Entropy $H(X) \rightarrow$ Shortest codelength
 - Mutual Information $I(X;Y) \rightarrow$ Channel capacity

• Minimum Descriptive Length (MDL)
 - Used to estimate model order in SP
Is Information Theory Useful?

- Is information theory fundamental?
 - Entropy $H(X) \rightarrow$ Shortest codelength
 - Mutual Information $I(X;Y) \rightarrow$ Channel capacity

- Minimum Descriptive Length (MDL)
 - Used to estimate model order in SP
 - But our thinking is that if the MDL of model A is shorter than the MDL of model B, model A describes the data better
Is Information Theory Useful?

- Is information theory fundamental?
 - Entropy $H(X) \rightarrow$ Shortest codelength
 - Mutual Information $I(X;Y) \rightarrow$ Channel capacity

- Minimum Descriptive Length (MDL)
 - Used to estimate model order in SP
 - But our thinking is that if the MDL of model A is shorter than the MDL of model B, model A describes the data better
 - Model A is fundamentally more meaningful
Is Information Theory Useful?

• Is information theory fundamental?
 – Entropy $H(X)$ → Shortest codelength
 – Mutual Information $I(X;Y)$ → Channel capacity

• Minimum Descriptive Length (MDL)
 – Used to estimate model order in SP
 – But our thinking is that if the MDL of model A is shorter than the MDL of model B, model A describes the data better
 • Model A is fundamentally more meaningful

• This work is based on an assumption that information is fundamental
Is Information Theory Useful?

• Is information theory fundamental?
 - Entropy $H(X) \rightarrow$ Shortest codelength
 - Mutual Information $I(X;Y) \rightarrow$ Channel capacity

• Minimum Descriptive Length (MDL)
 - Used to estimate model order in SP
 - But our thinking is that if the MDL of model A is shorter than the MDL of model B, model A describes the data better
 • Model A is fundamentally more meaningful

• This work is based on an assumption that information is fundamental
 - Information measure is not a measure but the measure
Kolmogorov-Martin Löf Randomness
Kolmogorov-Martin Löf Randomness

- Infinite sequence of bits 10011011010100001…
Kolmogorov-Martin Löf Randomness

- Infinite sequence of bits 10011011010100001...
- When is the sequence truly (iid uniform) random?
 - 50 years of failed attempts
 - Solved by Martin-Löf in 1966
Kolmogorov-Martin Löf Randomness

- Infinite sequence of bits 10011011010100001...
- When is the sequence truly (iid uniform) random?
 - 50 years of failed attempts
 - Solved by Martin-Löf in 1966

- Kolmogorov
 - Typical sequences: truly random sequence
 - Special sequences: other sequences
Kolmogorov-Martin Löf Randomness

- Infinite sequence of bits 10011011010100001...
- When is the sequence truly (iid uniform) random?
 - 50 years of failed attempts
 - Solved by Martin-Löf in 1966
- Kolmogorov
 - Typical sequences: truly random sequence
 - Special sequences: other sequences
- Random Sequence
 \[\exists c > 0 \forall n > 1 : K(x[1], \ldots, x[n]) \geq n - c \]
Kolmogorov-Martin Löf Randomness
Kolmogorov-Martin Löf Randomness

- Finite sequence of bits 10011011010100001
Kolmogorov-Martin Löf Randomness

- Finite sequence of bits 10011011010100001
- Algorithmically random if
 \[K(x[1], \ldots, x[n] | n) \geq n \]
Kolmogorov-Martin Löf Randomness

- Finite sequence of bits 10011011010100001
- Algorithmically random if
 \[K(x[1], \ldots, x[n]| n) \geq n \]
- Kolmogorov’s terms
 - Typical \(K(x[1], \ldots, x[n]| n) \geq n \)
 - Special \(K(x[1], \ldots, x[n]| n) < n \) \(\rightarrow \) Atypical
Kolmogorov-Martin Löf Randomness

- Finite sequence of bits 10011011010100001
- Algorithmically random if
 \[K(x[1], \ldots, x[n] | n) \geq n \]

- Kolmogorov’s terms
 - Typical \(K(x[1], \ldots, x[n] | n) \geq n \)
 - Special \(K(x[1], \ldots, x[n] | n) < n \) \(\rightarrow\) Atypical

- Coding theory
 - If random, incompressible, identity coder optimum \(\rightarrow\) Typical
 - If (universal) source coder can compress \(\rightarrow\) Atypical
Kolmogorov-Martin Löf Randomness

- Finite sequence of bits 10011011010100001
- Algorithmically random if
 \[K(x[1], \ldots, x[n]|n) \geq n \]
- Kolmogorov’s terms
 - Typical \(K(x[1], \ldots, x[n]|n) \geq n \)
 - Special \(K(x[1], \ldots, x[n]|n) < n \) → Atypical
- Coding theory
 - If random, incompressible, identity coder optimum → Typical
 - If (universal) source coder can compress → Atypical

A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.
Atypicality

A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.
Atypicality

A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.
Atypicality

A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.

\[C_t(x) - C_a(x) > 0 \]
Atypicality

A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.

\[C_t(x) - C_\alpha(x) > 0 \]

- Outlier detection
 - Low likelihood, rarity: \(C_t(x) \) large

Outlier
Atypicality

A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.

\[C_t(x) - C_a(x) > 0 \]

- **Outlier detection**
 - Low likelihood, rarity: \(C_t(x) \) large

- **Iid random case**

\[
\begin{align*}
10011011010100001 \\
11111111111111111
\end{align*}
\]
Atypicality

A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.

\[C_t(x) - C_a(x) > 0 \]

- **Outlier detection**
 - Low likelihood, rarity: \(C_t(x) \) large

- **Iid random case**

\[
\begin{align*}
10011011010100001 \\
11111111111111111
\end{align*}
\]

Equal probability

Outlier
A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.

\[C_t(x) - C_a(x) > 0 \]

- **Outlier detection**
 - Low likelihood, rarity: \(C_t(x) \) large

- **Iid random case**
 - \(C_t(x) \) same, but \(C_a(x) \) different
Atypicality

A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.

\[C_t(x) - C_a(x) > 0 \]

- **Outlier detection**
 - Low likelihood, rarity: \(C_t(x) \) large

- **Iid random case**
 - \(C_t(x) \) same, but \(C_a(x) \) different

- **Also prioritizes these cases**
 - The larger \(C_t(x) - C_a(x) \) the more atypical
Binary IID sequences

100001101001111111111111000101010111110001
Binary IID sequences

- Default law: \(P(0)=1-p, P(1)=p, \) \(p \) known

100001101001111111111111100010101010111110001
Binary IID sequences

- Default law: \(P(0) = 1 - p, P(1) = p \), \(p \) known
 - Codelength \(L(l) = l \left(\hat{p} \log \frac{1}{p} + (1 - \hat{p}) \log \frac{1}{1-p} \right) \), \(\hat{p} = \frac{1}{l} \sum X_i \)

10000110100111111111111111111111111000101010101111110001
Binary IID sequences

- Default law: $P(0) = 1-p$, $P(1) = p$, p known
 - Codelength $L(l) = l \left(\hat{p} \log \frac{1}{p} + (1 - \hat{p}) \log \frac{1}{1-p} \right)$, $\hat{p} = \frac{1}{l} \sum X_i$

- Alternative law: $P(1) \neq p$
Binary IID sequences

- Default law: $P(0)=1-p$, $P(1)=p$, p known
 - Codelength $L(l) = l \left(\hat{p} \log \frac{1}{p} + (1 - \hat{p}) \log \frac{1}{1-p} \right)$, $\hat{p} = \frac{1}{l} \sum X_i$

- Alternative law: $P(1) \neq p$
 - Universal source code from Cover’s book
Binary IID sequences

- Default law: \(P(0) = 1 - p, \ P(1) = p, \ p \) known
 - Codelength \(L(l) = l \left(\hat{p} \log \frac{1}{\hat{p}} + (1 - \hat{p}) \log \frac{1}{1 - \hat{p}} \right), \ \hat{p} = \frac{1}{l} \sum X_i \)

- Alternative law: \(P(1) \neq p \)
 - Universal source code from Cover’s book
 - Codelength \(L_{\hat{p}}(l) = lH(\hat{p}) + \frac{1}{2} \log l \)

1000011010011111111111000101010101111110001
Binary IID sequences

- Default law: $P(0)=1-p$, $P(1)=p$, p known
 - Codelength $L(l) = l \left(\hat{p} \log \frac{1}{p} + (1 - \hat{p}) \log \frac{1}{1-p} \right)$, $\hat{p} = \frac{1}{l} \sum X_i$
- Alternative law: $P(1)\neq p$
 - Universal source code from Cover’s book
 - Codelength $L_\hat{p}(l) = lH(\hat{p}) + \frac{1}{2} \log l$
- Need to tell beginning and end

100001101001111111111111111111111000101010101111110001
Binary IID sequences

- Default law: \(P(0) = 1 - p, P(1) = p, \) \(p \) known
 - Codelength \(L(l) = l \left(\hat{p} \log \frac{1}{\hat{p}} + (1 - \hat{p}) \log \frac{1}{1 - \hat{p}} \right), \hat{p} = \frac{1}{l} \sum X_i \)

- Alternative law: \(P(1) \neq p \)
 - Universal source code from Cover’s book
 - Codelength \(L_{\hat{p}}(l) = lH(\hat{p}) + \frac{1}{2} \log l \)

- Need to tell beginning and end

10000110100.1111111111111111000101010101111110001
Binary IID sequences

• Default law: $P(0)=1-p$, $P(1)=p$, p known
 - Codelength $L(l) = l \left(\hat{p} \log \frac{1}{\hat{p}} + (1 - \hat{p}) \log \frac{1}{1 - \hat{p}} \right)$, $\hat{p} = \frac{1}{l} \sum X_i$

• Alternative law: $P(1) \neq p$
 - Universal source code from Cover’s book
 - Codelength $L_\hat{p}(l) = lH(\hat{p}) + \frac{1}{2} \log l$

• Need to tell beginning and end
 - Cost of encoding `.`: $\tau = \log \frac{1}{P(\cdot \cdot)}$

\[
10000110100.111111111111110001010101011111110001
\]
Binary IID sequences

- Default law: \(P(0) = 1-p, P(1) = p, p \) known
 - Codelength \(L(l) = l \left(\hat{p} \log \frac{1}{\hat{p}} + (1 - \hat{p}) \log \frac{1}{1-\hat{p}} \right), \hat{p} = \frac{1}{l} \sum X_i \)

- Alternative law: \(P(1) \neq p \)
 - Universal source code from Cover’s book
 - Codelength \(L_{\hat{p}}(l) = l H(\hat{p}) + \frac{1}{2} \log l \)

- Need to tell beginning and end
 - Cost of encoding ‘.’: \(\tau = \log \frac{1}{P(\cdot \cdot)} \)
 - Cost of encoding length (Rissanen, Elias):
 \[\log^*(l) = \log l + \log \log l + \log \log \log l + \cdots \]

10000110100.11111111111111110001010101011111110001
Binary IID sequences

- Default law: \(P(0)=1-p, P(1)=p, p \) known
 - Codelength \(L(l) = l \left(\hat{p} \log \frac{1}{\hat{p}} + (1 - \hat{p}) \log \frac{1}{1-\hat{p}} \right), \hat{p} = \frac{1}{l} \sum X_i \)

- Alternative law: \(P(1) \neq p \)
 - Universal source code from Cover’s book
 - Codelength \(L_\hat{p}(l) = lH(\hat{p}) + \frac{1}{2} \log l \)

- Need to tell beginning and end
 - Cost of encoding `.`: \(\tau = \log \frac{1}{P(\cdot, \cdot)} \)
 - Cost of encoding length (Rissanen, Elias):
 \(\log^*(l) = \log l + \log \log l + \log \log \log l + \cdots \)

- Total codelength

\[
L_\hat{p}(l) = lH(\hat{p}) + \frac{3}{2} \log l + \tau
\]
Binary IID sequences

- Default law: $P(0) = 1 - p$, $P(1) = p$, p known
 - Codelength $L(l) = l \left(\hat{p} \log \frac{1}{\hat{p}} + (1 - \hat{p}) \log \frac{1}{1-\hat{p}} \right)$, $\hat{p} = \frac{1}{l} \sum X_i$

- Alternative law: $P(1) \neq p$
 - Codelength: $L_{\hat{p}}(l) = l H(\hat{p}) + \frac{3}{2} \log l + \tau$
Binary IID sequences

- Default law: $P(0)=1-p$, $P(1)=p$, p known
 - Codelength $L(l) = l \left(\hat{p} \log \frac{1}{\hat{p}} + (1 - \hat{p}) \log \frac{1}{1-p} \right)$, $\hat{p} = \frac{1}{l} \sum X_i$

- Alternative law: $P(0) \neq p$
 - Codelength: $L_\hat{p}(l) = lH(\hat{p}) + \frac{3}{2} \log l + \tau$

- Atypicality criterion
 $$D(\hat{p}||p) > \frac{\tau + \frac{3}{2} \log l}{l}$$
Theoretical Analysis

The probability P_A that a sequence of length l is classified as atypical is bounded by

$$P_A \leq 2^{-\tau + 1} \frac{1}{l^{3/2}} K(l, \tau), \quad \forall \tau : \lim_{l \to \infty} K(l, \tau) = 1$$
Theoretical Analysis

- The probability P_A that a sequence of length l is classified as atypical is bounded by
 \[P_A \leq 2^{-\tau + 1} \frac{1}{l^{3/2}} K(l, \tau), \quad \forall \tau : \lim_{l \to \infty} K(l, \tau) = 1 \]

- Consider the case $p = \frac{1}{2}$. The probability $P_A(X_n)$ that a given sample X_n is part of an atypical subsequence of any length is upper bounded by
 \[P_A(X_n) \leq (K_1 \sqrt{\tau} + K_2)2^{-\tau} \]

 for some constants K_1, K_2
A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.
Real-Valued Data

A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.
Real-Valued Data

A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.

- Generalization to real valued data
 - Definition based on exact encoding, not rate-distortion
Real-Valued Data

A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.

- Generalization to real valued data
 - Definition based on exact encoding, not rate-distortion
- Exact encoding of real-valued data
 - Lossless audio coding (MPEG-4 ALS, Apple Lossless)
Real-Valued Data

A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.

- **Generalization to real valued data**
 - Definition based on exact encoding, not rate-distortion

- **Exact encoding of real-valued data**
 - Lossless audio coding (MPEG-4 ALS, Apple Lossless)

- **Abstract encoding**
 - Fixed point, r bits after ., unlimited bits prior
 - Codelength (Rissanen)

\[
L(x) = - \log \int_{x}^{x + 2^{-r}} f(t) dt \approx - \log(f(x)) + r
\]
Real-Valued Data

\[L(x) = -\log \int_{x}^{x+2^{r}} f(t) dt \approx -\log(f(x)) + r \]
Real-Valued Data

• Abstract encoding
 – Fixed point, r bits after ., unlimited bits prior
 – Codelength (Rissanen)

\[
L(x) = -\log \int_{x}^{x+2^{-r}} f(t) dt \approx -\log(f(x)) + r
\]
Real-Valued Data

- Abstract encoding
 - Fixed point, r bits after ., unlimited bits prior
 - Codelength (Rissanen)

\[
L(x) = -\log \int_x^{x+2^{-r}} f(t) dt \approx -\log(f(x)) + r
\]

- Only need comparison of codelengths
 - \(r \) cancels out
 - Can let \(r \to \infty \), \(L(x) = -\log(f(x)) \)
Real-Valued Data

- A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.

\[L(x) = -\log \int_x^{x+2^{-r}} f(t) dt \approx -\log(f(x)) + r \]

- Only need comparison of code lengths
 - \(r \) cancels out
 - Can let \(r \to \infty \), \(L(x) = -\log(f(x)) \)
Real-Valued Data

• A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the (optimum) code designed for typical sequences.

\[L(x) = -\log \int_x^{x+2^{-r}} f(t) dt \approx -\log(f(x)) + r \]

• Only need comparison of codelengths
 - \(r \) cancels out
 - Can let \(r \to \infty \), \(L(x) = -\log(f(x)) \)

• Parametric model \(f(x|\theta) \)
 - Need to encode data and parameters
 - Rissanen’s MDL: \(L = -\log f(x|\hat{\theta}_{ML}) + \frac{k}{2} \log l \)
Vector Gaussian case

- Model
 \[\mathbf{x}[n] = s(\mathbf{\theta}) + \mathbf{w}[n] \]
 where \(\mathbf{w}[n] \sim \mathcal{N}(0, \Sigma) \), \(s(\mathbf{\theta}) \) \(k \)-parameter

- Used to find atypical relationships between data streams

- **Theorem:** Probability of intrinsically atypical sequence
 \[\limsup_{l \to \infty} \frac{\ln P_A(l)}{\frac{k+2}{2} \ln l} \leq 1 \]

- Or
 \[P_A(l) \prec l^{\frac{k+2}{2}} \]
Theoretical Analysis

- The probability P_A that a sequence of length l is classified as atypical is bounded by

$$P_A \leq 2^{-\tau + 1} \frac{1}{l^{3/2}} K(l, \tau), \quad \forall \tau : \lim_{l \to \infty} K(l, \tau) = 1$$
Vector Gaussian case

• Model

\[x[n] = s(\theta) + w[n] \]

where \(w[n] \sim \mathcal{N}(0, \Sigma) \), \(s(\theta) \) \(k \)-parameter

• Used to find atypical *relationships* between data streams

• **Theorem:** Probability of intrinsically atypical sequence

\[
\limsup_{l \to \infty} \frac{\ln P_A(l)}{\frac{k+2}{2} \ln l} \leq 1
\]

• Or

\[P_A(l) \lesssim l^{\frac{k+2}{2}} \]
Proof

• Atypicality criterion

\[r(x) = - \log \frac{f(x|\theta)}{f(x|\theta')} \geq \tau + \frac{k + 2}{2} \log l \]

• Chernoff bound

\[P \left(r(x) \geq \tau + \frac{k + 2}{2} \log l \right) \leq \exp(-s(\tau + \frac{k + 2}{2} \log l)) M_r(s) \]

• Need to prove \(M_r(s) = E[e^{sr}] \leq K < \infty \) independent of \(l \) for \(s < \ln 2 \)
Proof

- Need to prove $M_r(s) = E[e^{sr}] \leq K < \infty$ independent of l for $s < \ln 2$

$$- \ln \frac{p(x|\hat{\theta})}{p(x|\theta)} = \frac{1}{2} \sum_{n=1}^{l} x[n]^T \Sigma^{-1} x[n]$$

$$- \frac{1}{2} \sum_{n=1}^{l} \left(x[n] - s(\hat{\theta}) \right)^T \Sigma^{-1} \left(x[n] - s(\hat{\theta}) \right)$$

$$\leq \frac{1}{2l} \left(\sum_{n=1}^{l} x[n] \right)^T \Sigma^{-1} \left(\sum_{n=1}^{l} x[n] \right)$$

- Here $t = \sum_{n=1}^{l} x[n]$ is sufficient statistic
Proof

• Need to prove $M_r(s) = E[e^{sr}] \leq K < \infty$ independent of l for $s < \ln 2$

$$E[e^{sr}] \leq \frac{1}{(2\pi)^{l/2} \sqrt{\det\Sigma}} \int \exp\left(\frac{s}{2l \ln 2} t^T \Sigma^{-1} t\right)$$

$$\times \exp\left(-\frac{1}{2l} t^T \Sigma^{-1} t\right) dt$$

$$\leq K$$

• Here $t = \sum_{n=1}^{l} x[n]$ is sufficient statistic
Example: S & P 500
Example: S & P 500

- Daily trading prices 1998-2013
Example: S & P 500

- Daily trading prices 1998-2013
- 9 tech stocks
 - ADP, AMD, HP, IBM, Intel, Microsoft, Oracle, Yahoo
Example: S & P 500

- Daily trading prices 1998-2013
- 9 tech stocks
 - ADP, AMD, HP, IBM, Intel, Microsoft, Oracle, Yahoo
Example: S & P 500

- Daily trading prices 1998-2013
- 9 tech stocks
 - ADP, AMD, HP, IBM, Intel, Microsoft, Oracle, Yahoo
Example: S & P 500

- Daily trading prices 1998-2013
- 9 tech stocks
 - ADP, AMD, HP, IBM, Intel, Microsoft, Oracle, Yahoo
 - Atypical segment in 2003
 - Not clear from stocks themselves
 - Low point of Nasdaq after bubble
 - Perhaps stocks move more in sync?
Conclusion

- We have developed an information theory criterion of atypicality
 - Fundamental
- Works for
 - Discrete valued data
 - Real valued data
- Upper bounded probability of intrinsically atypical data
 - Same for real and discrete case
- Experimental results for stock market data