

Heuristic IG-TDMA Protocol for Underwater Acoustic Sensor Networks

Xilin Cheng¹, Rongqing Zhang¹, Liuqing Yang¹, Xiang Cheng²

¹Department of Electrical & Computer Engineering Colorado State University, Fort Collins, CO, USA ²School of Electronics Engineering & Computer Science Peking University, Beijing, China

Outline

- Underwater acoustic sensor network (UWASN) system model
- Interference-graph-based TDMA protocol
- Interference graph construction
- Interference graph clustering algorithms
 Optimal IG-TDMA and heuristic IG-TDMA protocols
- Simulation results
- Summary

UWASN System Model

- Sensor nodes sense data of interest.
- Central node gathers sensing data from sensor nodes.
- Sensing data are forwarded to the central node along a path pre-generated by a routing protocol.

TDMA Protocols

- Traditional TDMA protocol
 - Effectively avoid the interference by allowing at most one node to transmit at any given time slot
 - The consequent network throughput is greatly limited for large networks.
- Cellular MAC (C-MAC) protocol [Ma-Guo-Feng-Jiang-Feng'09]
 - TDMA-based protocol
 - Divides network into many cells clustered like cellular network
 - Allow cells with same index from different clusters to transmit simultaneously
 - ★ Spatial reuse not fully explored → throughput still limited

Network Division

TDMA Protocols

- Traditional TDMA protocol
 - Effectively avoid the interference by allowing at most one node to transmit at any given time slot
 - The consequent network throughput is greatly limited for large networks.
- Cellular MAC (C-MAC) protocol [Ma-Guo-Feng-Jiang-Feng'09]
 - TDMA-based protocol
 - Divides network into many cells clustered like cellular network
 - ✓ Allow cells with same index from different clusters to transmit simultaneously
 - ★ Spatial reuse not fully explored → throughput still limited
- Interference-graph-based TDMA (IG-TDMA) protocol
 - Dynamic and flexible spatial reuse that allows multiple nodes to transmit concurrently
 - ✓ Significantly improve network performance
 - \checkmark Low complexity and easy for application

IG-TDMA Protocol

- Central node makes the resource scheduling decision.
- Step 1: Information collection
 - Central node collects individual information of each communication link including positions, velocities, and amount of data to be transmitted.
- Step 2: Interference graph construction
 - For each time slot in the scheduled transmission frame, based on the predicted positions of the active sensor nodes, an undirected interference graph is constructed.

- Step 3: Interference graph clustering
 - Find a simultaneously transmitting nodes set
 - Chosen communication links are interference-free.
- Step 4: Data transmission
 - Central node broadcasts the scheduling decision.

Time Slot K

Interference Graph Construction

- Original undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
 - Each vertex $V_i \in \mathcal{V}$: a link that has communication request
 - Edge $E_{V_i,V_j} \in \mathcal{E}$ indicates mutual interference of V_i and V_j
 - Two vertices have weight 1 if they interfere with each other, and weight 0 otherwise.

$$E_{V_i,V_j} = \begin{cases} 1, & \text{if } V_i \in \mathcal{N}(V_j) \text{ or } V_j \in \mathcal{N}(V_i), \\ 0, & \text{otherwise.} \end{cases}$$

• Interference graph $\mathcal{G}_{in} = (\mathcal{V}, \mathcal{E}_{in})$ retains 0 -weight

Edge Weight Determination

- Relationship between two vertices V_i and V_j
 - ${}_{\circ}$ d_i : transmission distance between transmitting node and receiving node in V_i
 - Effective distance d_{ij} : distance from transmitting node of V_i to receiving node of V_j
 - Edge weight $E_{V_i,V_j} = 0$ between vertices V_i and V_j if $20 \log_{10} |H(\mathbf{d}_i, f_c)| - 20 \log_{10} |H(\mathbf{d}_{ji}, f_c)| \ge \alpha$ $20 \log_{10} |H(\mathbf{d}_j, f_c)| - 20 \log_{10} |H(\mathbf{d}_{ij}, f_c)| \ge \alpha$
 - $\cdot\,\alpha$: interference-free threshold ($\alpha>0$)

Interference Graph Clustering

• Each vertex V_i has an attribute named Q -value

$$Q(V_i) = \frac{\log_2\left(1 + \frac{P_t |H(D_i, f_c)|^2}{\sigma^2}\right)}{\mathcal{W}(V_i)}$$

- $\circ \ \mathcal{W}(V_i)$: the number of successfully transmitted packets of V_i within a window size t_w
- Proportional fairness: guarantee QoS of communication links suffering from poor channel condition

• Problem formulation

 $\circ\,$ Given \mathcal{G}_{in} , find a simultaneous interference-free transmission group with maximum group Q -value

$$\mathcal{T}_{max} = \max_{\mathcal{T} \subseteq \mathcal{V}} \sum_{V_i \in \mathcal{T}} Q(V_i),$$

s.t.
$$\begin{cases} \mathcal{G}_{in} = (\mathcal{V}, \mathcal{E}_{in}), \\ E_{V_i, V_j} = 0, \text{ for } \forall V_i, \forall V_j \in \mathcal{T} \end{cases}$$

Optimal IG Clustering Algorithm

- Clique: a subset of the vertex set, such that for every two vertices in the subset, there exists an edge connecting them.
- Maximal clique: the clique with the largest possible vertex size and cannot be extended by including one more adjacent vertex.

Optimal IG Clustering Algorithm

- Clique: a subset of the vertex set, such that for every two vertices in the subset, there exists an edge connecting them.
- Maximal clique: the clique with the largest possible vertex size and cannot be extended by including one more adjacent vertex.
- Optimal IG clustering algorithm:
 - Obtain all the maximal cliques in the interference graph
 - Bron-Kerbosch algorithm [Bron-Kerbosch'73]
 - Find the maximal clique with highest group Q-value
- Complexity of Bron-Kerbosch algorithm: $O(3^{|V|/3})$
 - $\pmb{\times}$ Not suitable for large network with high |V|
 - Low complexity suboptimal solution needed

Heuristic IG Clustering

- Procedure
 - $\,\circ\,$ Initialize $\mathcal{V}_0=\mathcal{V}$ and maintain a clique set \mathcal{S}
 - Add the vertex $V_i \in \mathcal{V}_0$ with highest Q -value to \mathcal{S}
 - Remove vertices that are not connect to V_i
 - from \mathcal{V}_0 (they can't be added to S to form a new clique)
 - Remove vertices in V_i from \mathcal{V}_0
 - $\,\circ\,$ Repeat above steps until \mathcal{V}_0 is empty
 - Output ${\cal S}$
- Complexity reduced to $O(|V|^2)$:
 - Suitable for large system

Heuristic IG Clustering

(4)

(d)

4

(3)

3

2

2

(e) $S = \{2, 3, 4\}$ (f)

Heuristic IG Clustering Algorithm

Input: Given $\mathcal{G}_{in} = (\mathcal{V}, \mathcal{E}_{in})$ where $\mathcal{V} = \{V_1, V_2, \cdots, V_{|V|}\}$ Each vertex V_i has an individual Q-value $Q(V_i)$.

• for
$$n=1,2,\cdots,|V|$$
 do

- Initialization: $\mathcal{V}_0 = \mathcal{V}$ and \mathcal{S}_n is an empty set;
- Step 1: Add V_n into S_n
 - Step 2: Remove vertices not connected with V_n from \mathcal{V}_0 ;
 - Step 3: Remove vertex V_n from \mathcal{V}_0 ;
 - Step 4: Find $V_i = \arg \max_{V_i \in \mathcal{V}_0} Q(V_i)$ and add V_i into \mathcal{S}_n ;
 - Step 5: Remove vertices not connected with V_i from \mathcal{V}_0 ;
 - Step 6: Remove vertex V_i from set \mathcal{V}_0 ;
 - Step 7: If \mathcal{V}_0 is not empty, go back to Step 4;

Step 8: Calculate
$$Q(S_n) = \sum_{V_k \in S_n} Q(V_k)$$

end

• Output : $S = \arg \max_{S_n, n \in \{1, 2, \cdots, |V|\}} Q(S_n)$

Simulation Settings

• UWA channel model

 $\,\circ\,$ The path loss ${\cal A}\,$ over distance $d\,$ at frequency f_c :

$$\mathcal{A}(d, f_c) = d^k a(f_c)^d$$

- k = 1.5: practical path loss factor
- Thorp's formula [Stojanovic'06, Berkhovskikh-Lysanov'82] $10\log a(f) = \frac{0.11f^2}{1+f^2} + \frac{44f^2}{4100+f^2} + 2.75 \cdot 10^{-4}f^2 + 0.003$
- $\,\circ\,$ For a transmission distance $d\,$ and the carrier frequency f_c , channel frequency response is:

$$H(d, f_c) = \frac{1}{\sqrt{\mathcal{A}(d, f_c)}}$$

- With transmit power P_t , the received signal power at distance d is $P_t |H(d,f_c)|^2$.

System Parameters

- Cube size:
- Nodes' velocity:
- Transmit power:
- Bandwidth:
- Carrier frequency:
- Packet length:
- Time slot length:
- Frame length:
- Transmitting nodes:
- Receiving nodes:
- Nodes' initial position: uniformly distributed

- $3 \times 3 \times 3 \text{ km}^3$ 2 knots 60 dB 5 kHz17 kHz2 s2 s200 s
 - 60%40%

Network Throughput Comparison

- Traditional TDMA protocol: lowest throughput
- C-MAC: spatial reuse not fully explored → throughput still limited
- CSMA/CA protocol: limited performance due to severe packet collisions in a large-scale and dense network
- Optimal IG-TDMA: significant performance improvement due to effective spatial reuse and interference management
- Heuristic IG-TDMA: close performance compared with optimal IG-TDMA

Effect of Node Density

Node density:

• Number of sensor nodes in $3 \times 3 \times 3 \text{ km}^3$ cubic space

- IG-TDMA: performance increases with node density
 - Node density increases

 Transmission and interference distances decrease
 more interference-free nodes can transmit simultaneously in a time slot
- C-MAC: performance increases with node density
 - \circ Spatial reuse not fully explored \rightarrow throughput still limited
- CSMA/CA: performance deteriorates with node density
 - Increasing node density could cause more packet collisions.

Summary

- Interference-graph-based TDMA (IG-TDMA) scheduling protocol for UWASN
 - Constructed a dynamic interference graph to indicate the interference condition among different transmitting links in the network
 - Heuristic IG-TDMA clustering: can realize a near-optimal network performance and much lower computational complexity
 - The proposed IG-TDMA protocol can significantly improve the network performance.

