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Classification

• Predicting a target label for a given instance

• For examples:

– Spam-detection

– Document 

categorization
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Boosting
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Boosting combines a set of 
weak classifiers to produce 
a single strong classifier!
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Boosting combines a set of 
weak classifiers to produce 
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𝑓 𝑥 = 𝛼1ℎ1 𝑥 + 𝛼2ℎ2 𝑥 + 𝛼3ℎ3 𝑥
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Semi-supervised Classification

• supervised learning use labeled training data
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Semi-supervised Classification

• supervised learning use labeled training data

• can the classifier be improved by unlabeled data?

• when semi-supervised learning works?

– labeled data is limited and expensive

– unlabeled data is plentiful and cheap
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Multi-label Classification

• one instance can belong to more than one category!
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Sports

Politics
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Multi-label Classification

• one instance can belong to more than one category!

• a learning task of predicting a set of target labels for a 
instance
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Politics Economy Sports Business Art
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Generic Semi-supervised Multi-label 

Boosting Algorithm
• given 𝑛 labeled data 𝑥1, 𝑌1 ,⋯ , 𝑥𝑛, 𝑌𝑛 and 𝑚 unlabeled data 

𝑥𝑛+1 ,⋯ , 𝑥𝑛+𝑚
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Generic Semi-supervised Multi-label 

Boosting Algorithm
• given 𝑛 labeled data 𝑥1, 𝑌1 ,⋯ , 𝑥𝑛, 𝑌𝑛 and 𝑚 unlabeled data 
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• ensemble classifier for each label 𝑙
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𝑙ℎ1
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unlabeled margin
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trade-off parameter
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Minimizing Variance Regularization 

over Unlabeled Data
• to use conditional variance 𝑉𝑎𝑟(𝑌|𝑥) as a loss function 

over unlabeled data

– Encouraging 𝐹 to be large in magnitude

21

– Variance expresses 
measurement uncertainty of 
the label variable

– Can be viewed as minimizing 
the expected value of a 
sigmoid loss

– Smooth, differentiable 
function of 𝐹(𝑥)
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Experiments
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Thank You! & Questions?


