THE ROLE OF PERCEPTUAL TEXTURE DISSIMILARITY IN AUTOMATING SEISMIC DATA INTERPRETATION

Tamir Hegazy, Zhen Wang, and Ghassan AlRegib*

Center for Energy and Geo Processing (CeGP) at Georgia Tech and KFUPM
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA, USA
{th164, zwang313, alregib}@gatech.edu
OUTLINE

• Background & Motivation
• Proposed Salt-Dome Detection Method
 – Gradient of Texture (GoT)
 – Thresholding & Post-processing
• Dissimilarity Measures
• Experimental Results
• Conclusion
MIGRATED DATA & SEISMIC INTERPRETATION

• Migrated data are acquired from reflected seismic waves

• Seismic interpretation is the extraction of geologic information from seismic data

http://www.oilinuganda.org/features/environment/uganda-pioneers-3d-seismic-surveys.html
MIGRATED DATA & SEISMIC INTERPRETATION

• Migrated data are acquired from reflected seismic waves

• Seismic interpretation is the extraction of geologic information from seismic data

http://tle.geoscienceworld.org/content/21/11/1118.extract
https://opendtect.org/osr/pmwiki.php/Main/NetherlandsOffshoreF3BlockComplete4GB
COMPUTER-AIDED INTERPRETATION

• Manual interpretation is time consuming and label intensive

• Image processing, computer vision, and machine learning techniques have been involved in seismic interpretation

• The interpretation of salt domes remains a challenging problem
CONVENTIONAL METHODS FOR SALT-DOME INTERPRETATION

<table>
<thead>
<tr>
<th>Methods</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Detection</td>
<td>Sensitive to local discontinuities</td>
</tr>
<tr>
<td>Graph-based Image Segmentation</td>
<td>Computationally less efficient</td>
</tr>
<tr>
<td>Active Contour Model</td>
<td>Accuracy depends on the initial contour</td>
</tr>
<tr>
<td>Multiple texture attributes</td>
<td>Important to select relevant features</td>
</tr>
</tbody>
</table>
OUTLINE

• Background & Motivation
• Proposed Salt-Dome Detection Method
 – Gradient of Texture (GoT)
 – Thresholding & Post-processing
• Dissimilarity Measures
• Experimental Results
• Conclusion
PROPOSED SALT DOME DETECTION METHOD

Seismic Sections

Compute “gradient of texture” (GoT)

Thresholding

Grow Region

Morph Operation

Initial Point Selection

Post-processing

Detected Salt Body
GRADIENT OF TEXTURE (GOT)

• Human perception is sensitive to texture changes

• Got describes the texture dissimilarity between two neighboring square windows, denoted as: \(d(W_{x-}, W_{x+}) \)

• Higher Got -> point on texture boundary
 Lower Got -> point inside the texture
Human perception is sensitive to texture changes.

GoT describes the texture dissimilarity between two neighboring square windows, denoted as: $d(W_{x-}, W_{x+})$

- Higher GoT -> point on texture boundary
- Lower GoT -> point inside the texture
MULTI-SCALE AND DIRECTIONAL COMPONENTS OF GOT

• Compare the dissimilarity of windows with various sizes
• Detect salt-dome boundary in any direction

• GoT:
\[
G_x[i, j] = \sum_{n=1}^{N} w_n \cdot d \left(W^i,j_{n,x-}, W^i,j_{n,x+} \right),
\]
\[
G_y[i, j] = \sum_{n=1}^{N} w_n \cdot d \left(W^i,j_{n,y-}, W^i,j_{n,y+} \right),
\]
\[
G[i, j] = \left(G_x^2[i, j] + G_y^2[i, j] \right)^{\frac{1}{2}},
\]

\(N \) : number of sizes

\(w_n \) : inversely proportional to \(n \)
THRESHOLDING AND POST-PROCESSING

• Hard Thresholding to highlight likely salt body
• Region growing and morphological operation remove noisy regions and smooth salt-dome boundary.

(a). Normalized GoT Attribute
(b). After thresholding
(c). After region growing
(d). After morphological operation
OUTLINE

• Background & Motivation
• Proposed Salt-Dome Detection Method
 – Gradient of Texture (GoT)
 – Thresholding & Post-processing
• Dissimilarity Measures
• Experimental Results
• Conclusion
DISSIMILARITY MEASURES USING FEATURE VECTORS

• \mathbf{F}_- and \mathbf{F}_+ represent the feature vectors of \mathbf{W}_+ and \mathbf{W}_-.

• Dissimilarity measure: $d(\mathbf{W}_-, \mathbf{W}_+) = \| \mathbf{F}_- - \mathbf{F}_+ \|$

(1). Using intensity and gradient statistics:
 - Intensity-based features: mean, standard deviation, and skewness
 - Gradient-based features: mean, standard deviation, and entropy

(2). Using singular values of \mathbf{W}_+ and \mathbf{W}_-.
MEASURE BASED ON FOURIER TRANSFORM

(3). Using Fourier coefficients:

\[d(W_-, W_+) = E \left\{ \| \mathcal{F} \{ W_- \} - \mathcal{F} \{ W_+ \} \| \right\} \]

(4). Using error spectrum chaos \(^1\): consistent with human perception

\[d(W_-, W_+) = M + \alpha P, \]

\[M = E \left\{ \| \mathcal{F} \{ \mathcal{F} \{ \nabla \{ |W_- - W_+| \} \} \} \| \right\}, \]

\[P = E \left\{ \| \mathcal{F} \{ \angle \mathcal{F} \{ |W_- - W_+| \} \} \| \right\}, \]

PROPOSED MEASURE BASED ON ERROR MAGNITUDE SPECTRUM CHAOS

• This measure is inspired by the previous measure

• Dropping the phase: reduces the sensitivity to shape
 Dropping the gradient: improves computational efficiency

• Dissimilarity measure:

\[d(W_-, W_+) = E \left\{ \mathcal{F} \left\{ \mathcal{F} \left\{ |W_- - W_+| \right\} \right\} \right\} \]
OUTLINE

• Background & Motivation
• Proposed Salt-Dome Detection Method
 – Gradient of Texture (GoT)
 – Thresholding & Post-processing
• Dissimilarity Measures
• Experimental Results
• Conclusion
EXPERIMENTAL SETUP

• Netherlands offshore F3 block with the inline number ranging from 389 to 409

• Compare five dissimilarity measures in the proposed salt-dome detection framework

• SalSIM index\[2\] derived from Frechet distance can be used to measure the similarity between detected boundaries and ground truth

EXPERIMENTAL RESULTS

<table>
<thead>
<tr>
<th>Seismic Sections</th>
<th>Mag. Spect. Chaos</th>
<th>Spectrum Chaos</th>
<th>Fourier Coeff.</th>
<th>SVD</th>
<th>Basic Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>#389</td>
<td>0.9091</td>
<td>0.9064</td>
<td>0.9050</td>
<td>0.8693</td>
<td>0.8440</td>
</tr>
<tr>
<td>#390</td>
<td>0.9198</td>
<td>0.9148</td>
<td>0.9186</td>
<td>0.8995</td>
<td>0.8406</td>
</tr>
<tr>
<td>#391</td>
<td>0.8930</td>
<td>0.8876</td>
<td>0.9037</td>
<td>0.8931</td>
<td>0.8585</td>
</tr>
<tr>
<td>#392</td>
<td>0.9312</td>
<td>0.9354</td>
<td>0.9345</td>
<td>0.9180</td>
<td>0.9221</td>
</tr>
<tr>
<td>#393</td>
<td>0.9331</td>
<td>0.9345</td>
<td>0.9283</td>
<td>0.8824</td>
<td>0.8546</td>
</tr>
<tr>
<td>#394</td>
<td>0.9302</td>
<td>0.9260</td>
<td>0.9267</td>
<td>0.9162</td>
<td>0.9283</td>
</tr>
<tr>
<td>#395</td>
<td>0.9448</td>
<td>0.9415</td>
<td>0.9337</td>
<td>0.9191</td>
<td>0.9213</td>
</tr>
<tr>
<td>#396</td>
<td>0.9419</td>
<td>0.9321</td>
<td>0.9283</td>
<td>0.9164</td>
<td>0.9228</td>
</tr>
<tr>
<td>#397</td>
<td>0.9313</td>
<td>0.9273</td>
<td>0.9230</td>
<td>0.9108</td>
<td>0.8586</td>
</tr>
<tr>
<td>#398</td>
<td>0.9464</td>
<td>0.9453</td>
<td>0.9369</td>
<td>0.9306</td>
<td>0.9282</td>
</tr>
<tr>
<td>#399</td>
<td>0.9435</td>
<td>0.9447</td>
<td>0.9402</td>
<td>0.9278</td>
<td>0.9432</td>
</tr>
<tr>
<td>#400</td>
<td>0.9329</td>
<td>0.9326</td>
<td>0.9303</td>
<td>0.9252</td>
<td>0.9230</td>
</tr>
<tr>
<td>#401</td>
<td>0.9552</td>
<td>0.9484</td>
<td>0.9507</td>
<td>0.9480</td>
<td>0.9471</td>
</tr>
<tr>
<td>#402</td>
<td>0.9532</td>
<td>0.9490</td>
<td>0.9501</td>
<td>0.9487</td>
<td>0.9488</td>
</tr>
<tr>
<td>#403</td>
<td>0.9512</td>
<td>0.9500</td>
<td>0.9506</td>
<td>0.9428</td>
<td>0.9377</td>
</tr>
<tr>
<td>#404</td>
<td>0.9471</td>
<td>0.9389</td>
<td>0.9405</td>
<td>0.9293</td>
<td>0.9362</td>
</tr>
<tr>
<td>#405</td>
<td>0.9456</td>
<td>0.9438</td>
<td>0.9391</td>
<td>0.9156</td>
<td>0.9055</td>
</tr>
<tr>
<td>#406</td>
<td>0.9550</td>
<td>0.9481</td>
<td>0.9461</td>
<td>0.9545</td>
<td>0.9487</td>
</tr>
<tr>
<td>#407</td>
<td>0.9461</td>
<td>0.9417</td>
<td>0.9434</td>
<td>0.9380</td>
<td>0.9394</td>
</tr>
<tr>
<td>#408</td>
<td>0.9332</td>
<td>0.9196</td>
<td>0.9298</td>
<td>0.9255</td>
<td>0.9188</td>
</tr>
<tr>
<td>#409</td>
<td>0.9430</td>
<td>0.9408</td>
<td>0.9438</td>
<td>0.9382</td>
<td>0.9287</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>0.9375</th>
<th>0.9337</th>
<th>0.9335</th>
<th>0.9214</th>
<th>0.9122</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard. Dev.</td>
<td>0.0151</td>
<td>0.0155</td>
<td>0.0129</td>
<td>0.0213</td>
<td>0.0358</td>
</tr>
<tr>
<td></td>
<td>GoT Time per Section (s)</td>
<td>14.5</td>
<td>438.8</td>
<td>14.8</td>
<td>24.2</td>
<td>1359.2</td>
</tr>
</tbody>
</table>
COMPARISON OF DETECTED SALT-DOME BOUNDARIES

(a). Basic Statistics, SalSIM=0.9362
(b). SVD, SalSIM=0.9293
(c). Fourier Coefficient, SalSIM=0.9405
(d). Spectrum Chaos (Mag. & phase), SalSIM=0.9389
(e). Mag. Spectrum Chaos, SalSIM=0.9471
OUTLINE

• Background & Motivation
• Proposed Salt-Dome Detection Method
 – Gradient of Texture (GoT)
 – Thresholding & Post-processing
• Dissimilarity Measures
• Experimental Results
• Conclusion
CONCLUSION

• In the proposed salt-dome detection framework, the perceptual measures are more consistent with human interpretation.

• Other perceptual measures in image/video quality assessment can be involved in seismic interpretation.

• We have extended the current framework to 3D for more accurate results.
RELATED WORK

• Salt-dome detection and tracking

• Fault detection and tracking

• Seismic structure retrieval

• Scene Labeling