

On the Energy Efficiency of Opportunistic Access in Wireless Home Networks

AHMED KHATTAB

GlobalSIP 2015 - 12/16/2015

Is ICT a Green Technology?

- ICT and computing resources account for
 - 3% to 10% of the worldwide energy consumption
 - 2.5% of the global carbon dioxide (CO₂) emission (will be 4% in 2020)
 - ICT CO₂ emission is approximately equivalent to that of airplanes and 1/4 that of automobiles worldwide.

 ICT players are currently aiming at reducing CO₂ emission by favoring less energy consuming technologies to maintain a sustainable ecosystem

Wireless Home Networking (WHN)

- The demand for home networking is surging
- The number of home devices with IEEE 802.11 interfaces in 2014 exceeded one billion devices*

* ABI Research, "Wi-Fi continues to dominate one billion unit home networking equipment and networked-enabled media device market."

Ahmed Khattab

3/17

Current WHN Channel Management

Manual and Static:		
	WHN App	Channel
 Fixed IEEE 802.11 channel per WHN application 	Multimedia Streaming	1
	Wireless Speaker	6
	Smart Light Control	11
	Smart Energy Control	4

.....

- Dynamic and Periodic:
 - WHN periodically changes its operating channels after **predefined** time intervals
- Problem: As no. of WHN increases, multiple WHN applications may coexist on a given channel
 - How they will share the channel??

....

Contention-based Coexistence

Standard IEEE 802.11 MAC

- CSMA/CA listen-before-talk
- No differentiation between two competing networks
 - Both networks will have the same channel access right
 - Equal bandwidth under fully backlogged traffic conditions

Opportunistic Access Coexistence

Integral concept of cognitive radio communication

J. Mitola III, "Cognitive radio: an integrated agent architecture for software defined radio," Ph.D. Thesis, KTH Royal Institute of Technology, 2000

Opportunistic Coexistence in WHNs

- Achieves autonomous channel and smart management
- Allow prioritizing channel access
 - Primary networks (high priority) and secondary networks (low priority)
 - Provides guarantees on the performance of the primary networks

Objectives

- Empirically assess opportunistic access from energy point of view if used in WHN
- Would it be more energy-efficient to have WHN applications opportunistically sharing a channel instead of competing for access?
 - Prioritizing WHN applications
 - Allowing low priority WHNs to access the channel only when not used
- Only one channel (statistical multiplexing gain of channel gain is not considered)
- Evaluate basic opportunistic access energy gain not a particular energy-efficient protocol
- Simple modifications to commodity WHNs wireless IEEE 802.11 chipsets

9/17

Energy Consumption of Radio Transceivers

- TX Power & RX Power
 - Depend on modulation scheme, the coding rate, the antenna configuration, ...
 - Comparable but their absolute values differ from one implementation to another
- IDLE Power
 - Measurement studies show that it is still comparable to the TX and RX powers
 - When in the idle mode, it still down-converts the RF signal, sample and process it.
- SLEEP Power
 - Order of magnitude less than the above powers

Methodology

- Implement opportunistic access using commodity IEEE 802.11 chipsets
 - A Secondary device can only access the channel only if the primary has no packets to transmit
- Candidate IEEE 802.11 parameters
 - Increase the sensing duration of the lower priority device
 - Increase the binary exponential backoff (BEB) parameters of the secondary device
 - No strict guarantees since it is probabilistic in nature
- Arbitration Inter-Frame Spacing (AIFS): is the time a node waits before transmitting next frame

 $AIFS = SIFS + AIFS_{number} \times Slot time$

• Accordingly modify the open source *Ath9k* driver developed for all Atheros IEEE 802.11 chipsets

Experimental Methodology

- I flow per network
 - Resembles the aggregation of all the traffic of arbitrary no. of in range flows in the network
- Primary Network (High Priority)
 - ON/OFF periodic traffic
 - Activity Factor: fraction of ON time
- Secondary Network (Low Priority)
 - Fully backlogged traffic
 - Use the modified driver

Secondary WHN Transmitter

Primary WHN Transmitter

Secondary WHN Receiver

Primary WHN Receiver

Experimental Setup

Parameter	Value
UDP Packet Size	1470 Bytes
Chipset	AR9285
PHY Rate	54 Mbps
SIFS	16 µsec
AIFS	34 µsec
Slot Time	9 μsec
(CW _{min} , CW _{max})	(15, 1023)
Chipset Voltage	3.3 V
TX Power Consumption	1531.2 mW
RX Power Consumption	1551 mW
IDLE Power Consumption	696.3 mW
SLEEP Power Consumption	23.1 mW

- *iperf* to generate and collect traffic
- Channel 10 was used as its least interfered channel
- Experiments were conducted at early hours of morning
- Average of at least five independent runs, each of 120 seconds length

Opportunistic Access Energy Saving

Opportunistic access achieves energy saving up to 25% that decreases with AIFS reduction.

Opportunist Access with Low Power IoE Chipset (QCA4004)

• The energy saving of opportunistic access increases up to 40% with low power chipsets

Channel Utilization

• Opportunistic access significantly improves the channel utilization, however, its gain is below contention-based access

Ahmed Khattab

15/17

Impact on Primary Network Outage

Another laptop equipped with *Wireshark* packet sniffer

 AIFS Ratio controls the protection level of the primary network (6.4% to 0.5%) which is significantly better than contention access (~50%) regardless the activity pattern of the primary network

Conclusions

- Opportunistic Access is not only a spectrum-efficient mechanism but also energy efficient
- Such energy efficiency depends on the TX/RX/IDLE power profile of WHN wireless chipset
- IEEE 802.11 parameters can be configured to implement opportunistic access
- There is a trade of between energy efficiency and the outages caused to primary WHNs

akhattab@ieee.og eece.cu.edu.eg/~akhattab/

