Robust Multi-Target Tracking in Outdoor Traffic Scenarios via Persistence Topology based Robust Motion Segmentation

Somrita Chattopadhyay, Qian Ge, Chunpeng Wei, Edgar Lobaton

Electrical and Computer Engineering Department
North Carolina State University
Vision system for self-driving car
Pipeline

- Stereo Disparity Map
- Robust Tracking
- Occupancy Grid Computation
- Persistence Analysis
- Robust Motion Segmentation
- Occupancy Grid Alignment
Stereo Disparity Map

- We Use Semi Global Block Matching (SGBM) to compute the disparity map. Higher value means closer to the camera.
Stereo Disparity Map

- UV disparity map
Ground Segmentation

- Fit a line or plane in V-diaprity map.

V disparity map
Occupancy Grid Computation

Pipeline

- Stereo Disparity Map
- Robust Tracking
- Occupancy Grid Computation
- Robust Motion Segmentation
- Persistence Analysis
- Occupancy Grid Alignment
Topological Persistence

\[\tau = 0.2 \quad \tau = 0.24 \quad \tau = 0.25 \quad \tau = 0.49 \quad \tau = 0.64 \]
Persistence Diagram

- Apply a threshold to persistence diagram to avoid noise
Persistence Diagram

- Regions with high enough persistence are the result regions.
Robust Segmentation

• Segmentation by threshold method

• Segmentation by persistence method
Occupancy Grid Alignment

• Compute the rotation (R) and translation (T) motion between successive images using SIFT

• Use the homograph information to accumulate the occupancy map by a Bayesian filter approach

Three successive occupancy maps

Accumulate occupancy map
Motion Segmentation

• In the accumulated occupancy grid, the regions with higher probability represent the static object.

• The region with low probability are the objects in motion.
Pipeline

Stereo Disparity Map → Occupancy Grid Computation → Persistence Analysis → Robust Motion Segmentation → Occupancy Grid Alignment → Robust Tracking
Robust Tracking

Robust Tracking

• Solve a maximize a posteriori probability problem

\[
T_r = \arg\max_T P(T|O) = \arg\max_T P(O|T)P(T)
\]

\[
T_r = \arg\max_T \prod_j P(T_j) \prod_i P(o_i|T)
\]

\[
T_r = \arg\min_T \left(\sum_j \log(P(T_j)) + \sum_i \log(P(o_i|T)) \right)
\]

\[
P(T_j) = P_e^2 P(o_{j1}, o_{j2}) P(o_{j2}, o_{j3}) \ldots P(o_{j_{n-1}}, o_{jn})
\]
Robust Tracking

\[T_r = \arg\min_T \left(\sum_j \log(P(T_j)) + \sum_i \log(P(o_i|T)) \right) \]

\[T_r = \arg\min_T \left(\sum_j C_e + \sum_i C_i + \sum_{m,n} C_{m,n} \right) \]

\[C_e = -\log(P_e^2) \]

\[C_i = -\log(P(o_i|T)) \]

\[C_{m,n} = -\log(P(o_m), P(o_n)) \]
Robust Tracking
Experiment

• Implemented in MATLAB

• Use KITTI dataset
 - A: 200 frames represent inner city
 - B: 120 frames represent residential traffic
Experiment

• Tracking results over 10 consecutive frames
Evaluation

- Motion segmentation

Precision = correct matches / total groundtruth objects

Recall = correct matches / output objects.

FA/Frm = No. of false alarms per frame.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Precision</th>
<th>Recall</th>
<th>FA/Frm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.95</td>
<td>0.97</td>
<td>0.25</td>
</tr>
<tr>
<td>B</td>
<td>0.91</td>
<td>0.96</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Evaluation

Persistence - Average Length = 38.1

Thresholding - Average Length = 21.2
Evaluation

- Tracking

<table>
<thead>
<tr>
<th>Dataset</th>
<th>GT</th>
<th>MT%</th>
<th>MOTA</th>
<th>MOTP</th>
<th>ML%</th>
<th>Fr</th>
<th>IDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
<td>0.80</td>
<td>1</td>
<td>0.83</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>0.86</td>
<td>0.88</td>
<td>0.81</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Number of groundtruth trajectories
Thanks!