Piecewise Planar Super-Resolution for 3D Scene

Gaoang Wang, Yu Hen Hu, Hongrui Jiang
University of Wisconsin – Madison
Dept. Electrical and Computer Engineering
Madison, WI 53706
hu@engr.wisc.edu
Outline

• Background of super-resolution
• Related work
• Model introduction
• Proposed method
• Experiments and results
• Conclusion
Background of super-resolution

• Reconstruct a high resolution image with one or multiple low resolution images.

• Compensation for the limit of the camera device.

• Use for image or video enhancement.
Related work

• Single-view image resolution
 J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation.”
 Disadvantage: cannot take advantages from multiviews.

• Multi-view image resolution
 Disadvantage: some algorithms only solve for 2D images; or largely depends on the accurate depth estimation to reconstruct for 3D scene.
Model introduction

\[Y_k = DHW_k I_{X_0}, k = 0, 1, 2, \ldots, K - 1. \]

- \(I_{X_0} \) is the reference image frame; \(W_k \) is some warp transform (the transform may be different for different parts of the image since it is a 3D scene image); \(H \) is the blur kernel; \(D \) is the down-sampling operator; \(Y_k \) is the low resolution image of the \(k \)-th frame.

- The question is how to reconstruct the high resolution image from multiview low resolution images.

- **Solution**: Segment images into piecewise planar parts and estimate the \(W_k \) transform for each part!
Proposed method

• Depth estimation by graph cut
 Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts.”
 The depth information is only used for plane segmentation.

• Plane segmentation
 We label each pixel point by minimizing the following object function,

 \[l_{p_0} = \arg \min_l \left(|1 - n_l^T p_0|^2 + \lambda \sum_{p \in C(p_0)} |l - l_p|^2 \right) \]
Proposed method

- Homography and warp transform estimation
 Here we update the pixel label by minimizing the intensity difference for the same point from different frames,

 \[
 l_{p_0} = \arg \min_{l=1,2,...,m_{opt}} \left(\sum_{k=1,2,...,K-1} \sum_{p_l \in C(p_0)} d_k(p_l) \right)
 \]

 where the intensity difference is defined below,

 \[
 d_k(p_{\pi}) = \left| I(p_{\pi}) - I(H_{\pi,kp_{\pi}}) \right|^2 V_{p_{\pi}} / N_{C(p_{\pi})}
 \]

 Finally after label updated, we estimate the transform by labeled feature points.
Proposed method

• Image reconstruction

Project the reconstructed image into image subspace by using Tikhonov regularization,

$$\hat{I}_{X_0} = \arg\min_{I_{X_0}} \left\{ \sum_{k=1}^{K} \left\| QM_k I_{X_0} - QY_k \right\|_2^2 + \alpha \left\| LI_{X_0} \right\|_2^2 \right\}$$

Here, we use a diagonal matrix Q to remove the occlusion and artifacts between plane boundaries. We set the diagonal elements equal to zero if they are invisible.
Experiments and results

• "Bull" images from Middlebury dataset
 Four low resolution images are shown below.
Experiments and results

From left to right: Single-view SR (PSNR = 35.1667), Proposed method (PSNR = 35.3245), Ground truth.
Experiments and results

Cropped image results. From left to right: Single-view SR, Proposed method, Ground truth.
Experiments and results

• Kitchen Scene
 Four low resolution images are shown below.
Experiments and results

From left to right: Single-view SR (PSNR = 28.0398), Proposed method (PSNR = 29.3387), Ground truth.
Experiments and results

Cropped image results. From left to right: Single-view SR, Proposed method, Ground truth.
Conclusion and future work

- With combined information from multiview low resolution images, we can get a better performance than single view reconstruction.

- We will look for solutions that combines the advantages from both single-view and multiview super-resolution.