

Mahdi Shaghaghi

Department of Electrical and Computer Engineering University of Toronto Toronto, ON, Canada Cramer-Rao Bound for Sparse Signals Fitting the Low-Rank Model with Small Number of Parameters

IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1497–1501, Sept. 2015.

Sergiy A. Vorobyov

Department of Signal Processing and Acoustics Aalto University Espoo, Finland

Summary

- Consider signals residing in a low-dimensional subspace characterized by a small number of parameters.
- Such signals with a sparse structure may be recovered from compressed measurements.
- The CRB gives a bound on the statistical performance of parameter estimation.
- The CRB can also be used to study the effect of compression and also to obtain the minimum required number of compressed samples.

Direction-of-Arrival (DOA) Estimation Application

Minimum Number of Compressed Samples

- If the number of compressed samples is less than or equal to the number of sources, the Fisher information matrix is singular.
- A singular FIM means that unbiased estimation of the entire parameter vector with finite variance is impossible.
- The converse does not hold in general.
- The minimum number of compressed samples for satisfactory performance depends on a specific performance criterion (such as probability of a subspace swap or the error of signal subspace estimation).

System Model

Low-rank system model

$$\boldsymbol{x}(t) = \boldsymbol{A}\boldsymbol{d}(t)$$

- A is a tall matrix.
- Measurement:

$$y(t) = \Phi (x(t) + w(t))$$
$$= \Phi x(t) + n(t)$$

- Φ is the measurement matrix.
- No specific structure is assumed for matrix $\, \Phi$.
- $\bullet \quad \Phi \hspace{0.1in}$ is treated as a deterministic matrix.
- *n*(*t*) is the additive noise with circularly-symmetric complex jointly Gaussian distribution

$$\mathcal{N}_C(\mathbf{0}, \mathbf{R})$$

 $\mathbf{R} = \sigma^2 \mathbf{\Phi} \mathbf{\Phi}^2$

Derivation of the CRB

• Vector of parameters

$$\boldsymbol{\vartheta} \triangleq \left[\bar{\boldsymbol{d}}^T(1), \tilde{\boldsymbol{d}}^T(1), \cdots, \bar{\boldsymbol{d}}^T(N), \tilde{\boldsymbol{d}}^T(N), \boldsymbol{\Omega}^T \right]^T$$

- $\overline{d}(t)$ and $\widetilde{d}(t)$ the real and imaginary parts of d(t). • $\Omega \triangleq [\omega_1, \cdots, \omega_P]^T$ contains the unknown parameters of
- $\Omega \triangleq [\omega_1, \cdots, \omega_P]^T$ contains the unknown parameters of matrix A.
- The CRB is given by

$$\operatorname{CRB}\left(\boldsymbol{\vartheta}\right) = \boldsymbol{I}^{-1}(\boldsymbol{\vartheta})$$

• The Fisher information matrix is given by

$$\begin{split} \boldsymbol{I}(\boldsymbol{\vartheta}) &= E\left\{\boldsymbol{\psi}\boldsymbol{\psi}^{T}\right\}\\ \boldsymbol{\psi} &\triangleq \partial LL/\partial\boldsymbol{\vartheta}\\ LL &\triangleq \ln p\left(\boldsymbol{y}(1), \cdots, \boldsymbol{y}(N) \,|\, \boldsymbol{\vartheta}\right) \end{split}$$

Numerical Example

- DOA estimation of 11 equally spaced sources form 20 to 50 degrees.
- Uniform linear array with 50 antenna elements.
- Steering vector

$$\boldsymbol{a}(\omega) \triangleq \left[1, e^{-j2\pi(d/\lambda)\sin(\omega)}, \cdots, e^{-j2\pi(N_x-1)(d/\lambda)\sin(\omega)}\right]^T$$

- *N* = 10 snapshots.
- The source vector d(t) is distributed according to

 $\mathcal{N}_C(\mathbf{0}, \sigma_s^2 \boldsymbol{I}_K)$

Spectral Estimation Application

CRB for the parameters of matrix A

$$CRB^{-1}(\mathbf{\Omega}) = 2\sum_{t=1}^{N} Re \left\{ \boldsymbol{D}^{H}(t) \boldsymbol{\Phi}^{T} \boldsymbol{R}^{-1} \left(\boldsymbol{I}_{N_{y}} - \boldsymbol{B} \left(\boldsymbol{B}^{H} \boldsymbol{R}^{-1} \boldsymbol{B} \right)^{-1} \boldsymbol{B}^{H} \boldsymbol{R}^{-1} \right) \boldsymbol{\Phi} \boldsymbol{D}(t) \right\}$$

where

$$\begin{split} \boldsymbol{D}(t) &\triangleq \left[\frac{\partial \boldsymbol{A}}{\partial \omega_1} \boldsymbol{d}(t), \cdots, \frac{\partial \boldsymbol{A}}{\partial \omega_P} \boldsymbol{d}(t) \right] \\ &= \left[\frac{\partial \boldsymbol{A}}{\partial \omega_1}, \cdots, \frac{\partial \boldsymbol{A}}{\partial \omega_P} \right] (\boldsymbol{I}_P \otimes \boldsymbol{d}(t)) \end{split}$$

$B \triangleq \Phi A$

CRB for estimating the source at 35 degrees

