
Large-scale sequencing studies often sequence populations of related individuals, including 
father-mother-child trios.  Since spontaneous variants are rare, individuals inherit SVs from 
either a father or mother. 
 
 
 
 
 
 
 
 
 
 
We use a maximum likelihood approach that incorporates the rarity of SVs with a penalty term 
and constrains parent and child signal reconstructions to reflect inheritance of variants.  The 
resulting penalized constrained negative Poisson log-likelihood is given by  
 
 
 
 
 
 
Based on [1], we solve this optimization problem by solving a sequence of quadratic sub-
problems from the second-order Taylor series expansion at each iterate      : 
 
 
 
 
where                                         and                 Because SVs are rare, we use                           to 
promote sparsity in our solution.                                                      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We introduce a novel SV discovery method using a maximum likelihood approach that 
incorporates sparsity and familial constraints. We demonstrated the effectiveness of 
our approach on both simulated data and data from the 1000 Genomes Project.  We 
intend to consider a general relatedness parameter to predict structural variants in a 
population. 
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Sparse Signal Recovery Methods for Variant Detection  
in Next-Generation Sequencing Data 

Abstract 
  Recent advances in high-throughput sequencing technologies have led to the 
collection of vast quantities of genomic data.  These sequencing data have the 
potential to answer questions about the evolutionary history of a species and the 
genomic basis of hereditary diseases.  Structural variants (SVs) -- rearrangements of 
the genome larger than one letter such as inversions, insertions, deletions, and 
duplications -- are an important source of genetic variation and have been implicated in 
some genetic diseases.  However, inferring SVs from sequencing data has proven to 
be challenging because true SVs are rare and are prone to low-coverage noise.  We 
attempt to mitigate the deleterious effects of low-coverage sequences by following a 
maximum likelihood approach to SV prediction.  Specifically, we model the noise using 
Poisson statistics and constrain the solution with a  sparsity-promoting      penalty since 
SV instances should be rare.   In addition, because offspring SVs inherit SVs from their 
parents, we incorporate familial relationships in the optimization problem formulation to 
increase the likelihood of detecting true SV occurrences. Numerical results are 
presented to validate our proposed approach. 
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Separable Subproblems 

Concluding Remarks 

Simulated Data Results 
We validated our method using simulated data.  Given       possible SV locations and 
500 true variants, we compare the results with and without familial constraints. 

1000 Genomes Data Results 

DNA Sequencing and Genetic Variants 

Figure 1: Illustration of different structural variations in a sample genome in 
comparison to the reference genome.  The sample genome is first fragmented.  The 
ends of the fragments are then aligned to the reference genome.  Fragments in the 
sample that do map to the reference are considered structural variants. 

The 1000 Genomes Project, which catalogues human genomic variation in 
comprehensive detail is one example of large-scale sequencing studies.  These 
massive repositories of data offer the potential to increase our understanding of the 
complex evolutionary history of different species, identify genetic basis of important 
phenotypes including disease and -- for humans -- usher in the era of personalized 
medicine.   
 
The genome of organisms change throughout generations via deletions, mutations, or 
other replication processes.  A promising class of genetic variant emerging from such 
studies are structural variants (SVs) -- rearrangements of the genome larger than one 
letter such as inversions, insertions, deletions, and duplications. We illustrate a few of 
these SVs below: 

Figure 4: ROC curves depicting the False Positive Rate vs. True Positive Rate for the 
reconstruction of the parent signals with low coverage and a) 70%, b) 90% similarity of 
variants using both methods with                  for regular constraints and                  for 
family constraints.  
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Mathematical Model 

Figure 3: a) Plot of the a-b plane, feasible 
region, and graphical representation of 
projected minimizers of optimization 
subproblems. b) Table representing all 
regions and conditions in the a-b plane, 
along with corresponding minimizers and  
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Deletion Insertion 

Figure 2: Illustration of transmission of 
variants through generations where the 
offspring in the first generation are 
heterozygous for the structural variant. 

- Homozygous Male (SV present) 
- Heterozygous Male 
- Homozygous Female (No SV) 
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We consider a general framework to detect SVs from sequencing data from a child 
and parent genome.  We observe given fragments that support a potential SV.  Then, 
our discrete stacked observations                      for the parent and child signals can be 
described as 

where   represents the expected genome coverage and   represents the true SV 
signal (0 if not present, 1 if variant present).  We seek to maximize the probability of 
observing the data using the probability mass function of the Poisson distribution.  
Since each location n is independent, the probability of data is given as 
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We apply our method to low-coverage (~ 4X) sequencing data for the CEU trio from the 
1000 Genomes Project [2] using regular and familial constraints.  Using the GASV [3] 
method on this dataset, we obtain a set of possible SVs.  For the parent signals, we 
report higher specificity and sensitivity rates with our method incorporating familial 
constraints. 
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Let                .  The objective function decouples in each variable and can be optimized 
separately, which results in the following scalar optimization:  
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The minimizer               depends on          , which is given by Figure 3. (a, b)(f⇤
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Let                                      .  Completing the squares and ignoring constant terms yields a = sc � �, b = sp � �
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Figure 5:  Plot of ROC curves depicting False Positive Rate vs. True Positives for 
Chromosome 1 of CEU Parents comparing familial constraints with regular constraints 
and               . True deletions were experimentally validated by the 1000 Genomes 
Project. 
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