Randomized Requantization with Local Differential Privacy

Sijie Xiong¹, Anand Sarwate¹, Narayan Mandayam¹

¹ Rutgers, The State University of New Jersey

Why interesting?

- Goals for future sensor networks such as IoT:
 - limited resource utilization
 - maintain data fidelity
 - protect private information
 - avoid attacks on individual nodes

What are the tradeoffs between these criteria?

The system model

Each sensor s_i transmits a value X_i or Y_i, which the server combines to compute the aggregate signal X. The server does not know the distribution D of X_i.

Performance metrics

- Local differential privacy [Duchi et al. '13]:
 - The adversary’s likelihood of guessing that the input was x over x' doesn’t increase more than e^ϵ after observing the released value y.
 - $P(x = x) = P(x = x'|y = y) \cdot e^\epsilon$

- Compression ratio: $\rho = \log_2|Y| / \log_2|X|$

- Utility (mse):
 - $\delta = E_{P,Q}[d(X,Y)]$
 - $\sum_{i=1}^{N} \sum_{j=1}^{N} P(x_i)Q(y_j|x_i)(x_i - y_j)^2$

Goal: find privacy-utility tradeoff and optimal Q

- The set of ϵ-locally differentially private channels and the set of channels yielding expected distortion no greater than δ are defined by
 - $Q_{LDP}(\epsilon) = \left\{ Q(y|x) : \log_{\frac{Q(y|x)}{Q(y|x')}} \leq \epsilon, \forall (x, x', y) \in X \times X' \times Y \right\}$
 - $Q_{MSE}(\delta) = \left\{ Q(y|x) : \max_{P \in P} E_{P \times Q}[d(X,Y)] \leq \delta \right\}$

- Given P, ρ, δ, the optimal ϵ becomes
 - $\epsilon^* = \min_{\epsilon \geq 0}\max_{P \in P} E_{P \times Q}[d(X,Y)] \leq \delta$

- S. under $P \times Q$

Theorem

The above optimization problem is a constrained quasi-convex optimization problem, and can be solved by bisection method.

Solving the optimization problem

Minimum achievable privacy level ϵ^* given δ, ρ value pairs, finding

- (ϵ, δ, ρ)-tradeoff
 - for fixed ρ, standard $\delta \uparrow \epsilon$ tradeoff
 - across cmp. ratios, achievable ϵ quite small under small δ
 - can halve bit rate without sacrificing privacy

Validation on synthetic data

- Compare randomized requantization (RR) with perturbation method in the sparse Fourier transform domain
 - RR works better, more consistent
 - RR adds in much smaller noise
 - RR scales better with network size

Ongoing work and further directions

- Optimizing over reconstruction Y (c.f. Lloyd-Max).
- Use privacy allocation to apportion resources in networks:
 - Individuals have different privacy budget e_1, e_2, \ldots, e_N
 - Multiple servers trying to access the same data
 - Gateway has to manage constraints and demands

Diagram:

- Sensors X_1, X_2, \ldots, X_N transmit to a gateway, which passes on the information to a server.