

Detecting the Instant of Emotion Change From Speech using a Martingale Framework

Zhaocheng (David) Huang, Julien Epps

Never Stand Still

Faculty of Engineering

School of Electrical Engineering and Telecommunication

Outline

- Motivation
- Related Work
- Conventional Martingale Framework for Change detection
- Proposed Martingale for Emotion Change Detection
- Experimental Results
- Conclusions

Motivation behind Emotion Change Detection

- Speech based Emotion Recognition
 - A per-file basis emotional signal processing
 - Increasing popularity in continuously tracking emotion dimensions
 - However, no systematic insights into *Emotion Changes*
- Research question:
 - Can we detect the *time*, at which emotion change occurs?
- Detecting emotion changes in time is important
 - Human Computer Interaction
 - Emotion Regulation
 - Surveillance purpose to detect outburst of emotions
 - Medical purpose to monitor emotion changes of patients

Related Work

- Only a small number of studies for Emotion Change Detection
 - Emotional evolutions are detectable [Böck 2015]
 - Large changes in emotion dimensions using topic model [Lade 2013]
 - Likelihood ratio based methods [Huang 2015]
- Limitations:
 - Speaker Change Detection Methods
 - Phonetic and speaker variability
 - Lack of large emotional databases
- Generic change-point detection method
 - Martingale framework by exchangeability testing [Vovk 2003]
 - Successfully be used in change-point detection in image processing [Ho 2010]
 - Speech rate change detection [Yasuda 2012]

Exchangeability

- Definition:
 - A sequence of random variables $\{x_1, x_2, ..., x_n\}$ (observed one by one) is exchangeable if their joint distribution remains unchanged regardless of any permutation π of indices $\{1, ..., n\}$, namely

$$P(x_1, x_2, \dots, x_n) = P(x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)})$$

- Examples

- Lack of exchangeability implies changes in distribution/model
 - Main idea for Exchangeability Testing [Vovk 2003, Ho 2010]

Exchangeability Testing using Martingale

• Exchangeability Testing

- Definition of *Martingale* [Ho 2010]
 - Given a sequence of random variables $X_i: \{x_1, x_2, ..., x_i: 1 \le i \le \infty\}$, M_i is a measurable function of X_i and $E(|M_i|) < \infty$, then M_n is a
 - Martingale if $E(M_{n+1}|X_{n+1}) = M_n$
 - Super-martingale if $E(M_{n+1}|X_{n+1}) < M_n$
 - Sub-martingale if $E(M_{n+1}|X_{n+1}) > M_n$
 - Given X_{n+1} , the expected M_{n+1} remains unchanged/decrease/increase
 - M_n measures the confidence of rejecting H_0
 - Reject H_0 , when $M_n > \lambda$, where λ is a predefined threshold

Conventional Martingale for Change-Point Detection

- Calculate M_n for each feature vector x_n , based on model θ
 - 1. Calculate s_n : how unlikely x_n comes from θ
 - 2. Calculate p_n : compare s_n to all previous $s_{1:n-1}$
 - 3. Calculate M_n : increase/decrease/unchanged
- Compare M_n with a predefined threshold λ
 - if $0 < M_n < \lambda$, continue detection
 - if $M_n \ge \lambda$, reject H_0 and restart detection with $M_{n+1} = 1$
- If there is a change point
 - Large $s_n \rightarrow \text{small } p_n \rightarrow \text{increasing } M_n$

Conventional Martingale for Change-Point Detection

- Limitations:
 - Phonetic variability
 - Incapability of handling long term no-change situation
 - Large delay time

Proposed Martingale for Emotion Change Detection

- Solution:
 - Global emotional model θ_{emo}
 - Global *S* from θ_{emo}
 - Fix p_n based on *S*
 - $s_n < \mathbf{S} \to \log(M_n) \downarrow$
 - $s_n \ge \mathbf{S} \to \log(M_n) \uparrow$
 - Peaks and troughs
 - Linear regression (slope)

Proposed Martingale for Emotion Change Detection

- 1. Strangeness
 - θ_{emo} is a GMM model for one emotion
 - $s_n = -\log(P(\boldsymbol{x}_n | \boldsymbol{\theta}_{emo}))$
 - $S = \frac{(S_Q^1 + S_{100-Q}^2)}{2}$, where *Q* means *Q* percentile of all strangeness values belongs to θ_{emo}
- 2. P value

$$- p_n = \begin{cases} p^{sub}, & s_n \ge S \\ p^{super}, & s_n < S \end{cases}$$

- 3. Log martingale value: $log(M_n(p_n))$
- 4. Two-pass linear regression
 - $k_{past}^{N_1} * k_{future}^{N_1} < 0$ $k_{past}^{N_2} * k_{future}^{N_2} < 0$

Database: IEMOCAP [Busso 2008]

Experimental Settings

- Features
 - 13 MFCCs and their first order derivatives, VoiceProb = 0.55
 - 28 eGeMAPS low level descriptors [Eyben 2015], VoiceProb = 0.7
- Emotional Model Gaussian Mixture Models (GMMs)
 - Leave-one-speaker-out 16-Mixtures GMM for Neutral, Negative Arousal and Negative Valence
- Baseline
 - Generalized Likelihood Ratio, no prior emotion information [Huang 2015]
- Parameters for Martingale
 - $p^{sub} = 0.25, p^{super} = 0.5, N_1 = 10, N_2 = 60$
 - Q = 50% and 70%

Experimental Results

Baseline: Generalized Likelihood Ratio, No prior emotion information [Huang 2015]

Conclusions & Limitations

- Conclusions
 - We proposed a modified Martingale framework for detecting emotion change points in time from speech based on exchangeability testing
 - Robustness to potential variability using one emotion model
 - A lower delay and able to handle non-change over a long time
 - A general framework for emotion change detection
 - Requires only one model
 - Functionals may improve the detection performances
- Limitations
 - Only handle two classes.
 - However, can use multiple martingales
 - Related to performances of emotion recognition algorithms
 - Database is artificially concatenated

References

- HUANG, Z., EPPS, J. & AMBIKAIRAJAH, E. An Investigation of Emotion Change Detection from Speech. INTERSPEECH, 2015.
- LADE, P., BALASUBRAMANIAN, V. N., VENKATESWARA, H. & PANCHANATHAN, S. Detection of changes in human affect dimensions using an Adaptive Temporal Topic model. Multimedia and Expo (ICME), 2013 IEEE International Conference on, 2013. IEEE, 1-6.
- VOVK, V., NOURETDINOV, I. & GAMMERMAN, A. Testing exchangeability on-line. ICML, 2003. 768-775.
- HO, S.-S. & WECHSLER, H. 2010. A martingale framework for detecting changes in data streams by testing exchangeability. *Pattern Analysis and Machine Intelligence, IEEE Transactions on,* 32, 2113-2127.
- BUSSO, C., BULUT, M., LEE, C.-C., KAZEMZADEH, A., MOWER, E., KIM, S., CHANG, J. N., LEE, S. & NARAYANAN, S. S. 2008. IEMOCAP: Interactive emotional dyadic motion capture database. *Language resources and evaluation*, 42, 335-359.
- EYBEN, F., WENINGER, F., GROSS, F. & SCHULLER, B. Recent developments in opensmile, the munich open-source multimedia feature extractor. Proceedings of the 21st ACM international conference on Multimedia, 2013. ACM, 835-838.
- BÖCK, R. & SIEGERT, I. Recognising Emotional Evolution from Speech. ERM4CT'15, 2015. 13-18.

THANK YOU

zhaocheng.huang@unsw.edu.au

