Bandlimited Field Reconstruction from Samples obtained on a Discrete Grid with Unknown Random Locations

Ankur Mallick, Animesh Kumar
Electrical Engineering
Indian Institute of Technology Bombay
Motivation - Spatial Sampling

- Consider the problem of estimating a spatially varying field over a large area (For eg. Temperature)

Source: http://climatelondon.org.uk/
Standard Approach

• The usual procedure is to estimate the number of degrees of freedom of the field
• If there are ‘N’ degrees of freedom, ‘N’ samples are taken and the corresponding system of equations is solved

Source: http://climatelondon.org.uk/
Localization of Sensors is Challenging

- Localization algorithms or GPS equipment required to estimate the coordinates of the sensors is expensive – especially if the number of sensors is large
- The location information obtained might be unreliable since sensor positions are liable to perturbations in spatial sampling

Source: http://climatelondon.org.uk/
Benefits of Location Unaware Sensors

- Reduced cost of sensor deployment
- Lower amount of data to be transmitted
- Masking of sensor locations prevents the location from being detected even if the data is intercepted
Consider the 1D version of the spatial sampling problem

g(t) is a smooth bandlimited, periodic field (one period is shown)

Assuming the period to be 1:

\[
g(t) = \sum_{k=-b}^{b} a[k] \exp(j2\pi kt)
\]
Distributed Sampling Setup

- Sensors are deployed at unknown locations T_1, T_2, \ldots, T_n obtained according to a random distribution.
- The ordering of the locations is also unknown.
- The goal is to estimate the field using the sample values and the distribution on the sensor locations.
Assumption on Sensor Deployment

- The problem where sensors are deployed according to a continuous distribution is non-linear and hence difficult to solve.
- We will address a simplified version of the problem where the sensors are located at a random point on a discrete grid.
Sampling Model

- $g(t) = \sum_{k=-b}^{b} a[k] \exp(j2\pi kt)$
- $s_b = \frac{1}{(2b+1)}$ (Spacing Parameter)
- $(2b+1)$ grid points: $\{0, s_b, 2s_b, \ldots, 2bs_b\}$
- Consider any sensor deployed at location T according to the distribution $p(t)$: $T= is_b \text{ w.p. } p_i$ ($i = 0, 1, \ldots, 2b$)
- Sensor location, i.e. the index ‘i’ is unknown and oversampling is used to overcome location unawareness
Performance Criterion

- The field has $2b+1$ degrees of freedom

- Correct detection of the $2b+1$ field values, $g(is_b)$, corresponds to correct estimation of the field

- We wish to detect the field correctly with a high probability

- Hence detection error probability is the performance criterion to be minimized
Main Result

-
 \[g(t) = \sum_{k=-b}^{b} a[k] \exp(j2\pi kt) \]

- Detection error probability depends on the distribution on the sensor locations, \(p(t) \)

- \(p(t) \) is assumed to be discrete and asymmetric

- The **main result** of our work is to find the optimal such \(p(t) \) that minimizes the detection error probability of any field \(g(t) \)
Field Detection Algorithm

- The field detection algorithm has 2 steps
- Step 1: Clustering Samples
- Step 2: Assigning Locations to Clusters
- Additional assumption: $p_0 < p_1 < p_2 < \ldots < p_{2b}$
Clustering Samples

\[
\begin{bmatrix}
1 \\
2 \\
. \\
. \\
n
\end{bmatrix}
\rightarrow
\begin{bmatrix}
T_1 \\
T_2 \\
. \\
. \\
T_n
\end{bmatrix}
\rightarrow
\begin{bmatrix}
g(T_1) \\
g(T_2) \\
. \\
. \\
g(T_n)
\end{bmatrix}
\]

Scattering

\[T_k = is_b \text{ w.p. } p_i \quad (0 \leq i \leq 2b; 1 \leq k \leq n)\]

Sampling

\[g(T_k) = g(is_b) \text{ w.p. } p_i \quad (0 \leq i \leq 2b; 1 \leq k \leq n)\]

• All samples of equal value are put in the same cluster (‘Value’ of the cluster = Value of any sample in the cluster)
• Since there are \(2b+1\) distinct sample values we form \((2b+1)\) clusters
Clustering Samples

\[
\begin{bmatrix}
1 \\
2 \\
. \\
n
\end{bmatrix}
\quad \text{Scattering} \quad \begin{bmatrix}
T_1 \\
T_2 \\
. \\
T_n
\end{bmatrix}
\quad \text{Sampling} \quad \begin{bmatrix}
g(T_1) \\
g(T_2) \\
. \\
g(T_n)
\end{bmatrix}
\]

\[T_k = is_b \text{ w.p. } p_i \quad (0 \leq i \leq 2b; 1 \leq k \leq n)\]

\[g(T_k) = g(is_b) \text{ w.p. } p_i \quad (0 \leq i \leq 2b; 1 \leq k \leq n)\]

- All samples of equal value are put in the same cluster (‘Value’ of the cluster = Value of any sample in the cluster)
- Since there are \(2b+1\) distinct sample values we form \((2b+1)\) clusters
Assigning Locations to Clusters

- ‘Type’ of cluster = Number of elements in the cluster
- Clusters are sorted according to type
- ‘Value’ of cluster with smallest ‘Type’ is assigned to \(g(0) \), next smallest to \(g(s_b) \), and so on till \(g(2bs_b) \) (since \(p_0 < p_1 < ... < p_{2b} \))
- Consider the following illustration for the case where \(b=2 \) and so there are \(2b+1=5 \) clusters:

![Clusters Diagram]
Assigning Locations to Clusters

• ‘Type’ of cluster = Number of elements in the cluster
• Clusters are sorted according to type
• ‘Value’ of cluster with smallest ‘Type’ is assigned to \(g(0) \), next smallest to \(g(s_b) \), and so on till \(g(2bs_b) \) (since \(p_0 < p_1 < ... < p_{2b} \))
• Consider the following illustration for the case where \(b=2 \) and so there are \(2b+1=5 \) clusters:

```
Cluster 5  Cluster 4  Cluster 2  Cluster 1  Cluster 3
```

\[g(0) \]
\[g(s_b) \]
\[g(2s_b) \]
\[g(3s_b) \]
\[g(4s_b) \]
Illustrative Example

- Consider a field $g(t)$ as shown below with $b=1, s_b=1/3$ which is sampled $n=10$ times.

![Graph of g(t)](image)

- Conclusion: $g(0)=1.06, g(1/3)=1.80, g(2/3)=0.14$
- Field is detected **correctly**

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Value</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.06</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1.80</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0.14</td>
<td>5</td>
</tr>
</tbody>
</table>
Illustrative Example

- Consider a field $g(t)$ as shown below with $b=1$, $s_b=1/3$ which is sampled $n=10$ times

- Conclusion: $g(0)=1.80$, $g(1/3)=1.06$, $g(2/3)=0.14$

- Field is detected *incorrectly*
What if the field values at 2 sensor locations are equal?

- All samples of the same value are grouped in the same cluster

- If field value is equal any 2 of the \(2b+1\) grid points then all the samples from these points go into the same cluster and we will have less than \(2b+1\) clusters

- If we assume the signal value to be equal at grid points ‘0’ and ‘\(s_b\)’ to be equal then:

\[
\sum_{k=-b}^{b} a[k](\exp(j2\pi k(0)) - \exp(j2\pi k(s_b))) = 0
\]

- To satisfy this one of the Fourier series coefficients, \(a[k]\), is constrained to a fixed value

- If Fourier Series coefficients of a natural signal are instances of independent, continuous random variables then this occurs with probability zero
Detection Error Probability

- Let N_i be the ‘type’ of the cluster corresponding to $g(is_b)$ (i.e. samples from location is_b) in a set of ‘n’ samples.

- Our field detection algorithm is based on the assumption that $0 < N_0 < N_1 < \ldots < N_{2b}$ because $0 < p_0 < p_1 < \ldots < p_{2b}$.

- Probability of detection error (P_e) = $P((0 < N_0 < N_1 < \ldots < N_{2b})^c)$.

- It can be shown from the union bound that:

 $M \leq P_e \leq (2b+1)M$

 $M = \max(P(N_0 = 0), P(N_0 > N_1), P(N_1 \geq N_2), \ldots, P(N_{2b-1} \geq N_{2b}))$.

- It is known from Sanov’s Theorem (analogous to the Chernoff Bound) that each term in M decays exponentially with an increase in ‘n’.

- Thus the distribution $p = (p_0, p_1, \ldots, p_{2b})$ that minimizes M, also minimizes P_e.
Deriving the Main Result

• \(M = \max(P(N_0 = 0), P(N_0 \geq N_1), P(N_1 \geq N_2), \ldots, P(N_{2b-1} \geq N_{2b})) \)

• \(P(N_0 = 0) = (1 - p_0)^n \)

• \(P(N_0 \geq N_1) \propto 2^{-nD^*} \) (From Sanov’s Theorem)

 where \(D^* = \min \sum_{i=0}^{2b} \frac{N_i}{n} \log_2 \frac{N_i}{np_i} \), subject to \(\sum_{i=0}^{2b} N_i = n \) and \(N_1 \leq N_0 \)

• The other terms in \(M \) can be calculated as a function of \(p \) in similar fashion.

• Minimizing \(M \) with respect to \(p \) (equivalent to minimizing \(P_e \) with respect to \(p \)) gives the following distribution:

 \[
 p_i = \frac{3(i + 1)^2}{(b + 1)(2b + 1)(4b + 3)} \quad \text{for } 0 \leq i \leq 2b
 \]

• This is the distribution that gives minimum detection error probability for our field detection algorithm.
Simulation Setup

• Field being estimated: \(g(t) = \sum_{k=\pm b}^b a[k] \exp(j2\pi kt) \) \((b = 4\) is assumed\)

• \(a[k]'s \) are generated using a uniform random number generator (Table 1) with \(a[-k] = (a[k])^* \) for real valued fields (conjugate symmetry)

• Number of samples collected (‘\(n \)’) is increased from 100 to 20,000

• The empirical detection error probability for various distributions (Table 2) on the sensor locations is simulated using 10,000 Monte-Carlo trials

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a[0])</td>
<td>1</td>
</tr>
<tr>
<td>(a[1])</td>
<td>0.9134 - j0.5469</td>
</tr>
<tr>
<td>(a[2])</td>
<td>0.1270 - j0.2785</td>
</tr>
<tr>
<td>(a[3])</td>
<td>0.9058 - j0.0975</td>
</tr>
<tr>
<td>(a[4])</td>
<td>0.8147 - j0.6324</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution Type</th>
<th>(p = [p_0, p_1, \ldots, p_{2b}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>(\alpha_1[U(1), U(2), \ldots, U(2b+1)]^*)</td>
</tr>
<tr>
<td>Linear</td>
<td>(\alpha_2[1, 2, \ldots, 2b+1])</td>
</tr>
<tr>
<td>Cubic</td>
<td>(\alpha_3[1, 8, \ldots, (2b+1)^3])</td>
</tr>
<tr>
<td>Optimal</td>
<td>(\alpha_4[1, 4, \ldots, (2b+1)^2])</td>
</tr>
</tbody>
</table>

*\(U(k)'s \) are ordered uniform random variables
Simulation Results

- We use a log-log plot since the P_e decays exponentially with n and we are interested in modeling the exponent.

- Each plot ends when the empirical detection error probability becomes zero or the maximum sample size ($n = 20000$) is reached.

- It is observed that the estimated optimal distribution decays fastest and has the smallest empirical detection error probability.
Extension to the 2D case

• In the 1 dimensional case the signal had $2b+1$ degrees of freedom and hence we sampled it at $2b+1$ grid points
• Similarly in the 2D case, if the signal has ‘N’ degrees of freedom it is sampled at ‘N’ grid points
• Sensors are deployed according to an asymmetric distribution and the location on the grid where the sensor lands is unknown

$N=8$
$p_0 < p_1 < ... < p_7$

- Sensors
Future Work

• Extending the setup to include measurement noise on the samples

• Requires application of clustering algorithms from machine learning (For eg. EM algorithm) on the noisy samples
Future Work

• Deploying sensors according to an arbitrary continuous distribution

• We are working on an algorithm to estimate the field in this case
Other Works in this area