Motivation and Setup

Motivation
- Centralized Approach and Challenges
 - Composite Hypothesis
 \[H_1: \theta' \neq 0 \]
 \[H_0: \theta = 0 \]
 - \(\theta' \): M-dimensional parameter, deterministic but unknown
 - Network of \(N \) agents. Observation sequence at each agent
 \[y_n(t) = h_n(\theta) + \gamma_n(t), \]
 where \(h_n(\cdot) \) is a non-linear function, \(h_n(0) = 0 \), \(h_n(\cdot) : \mathbb{R}^M \rightarrow \mathbb{R}^M \), \(M_a < M \), \(\gamma_n(t) \sim N(0, \Sigma_f) \)

Centralized Approach and Challenges
\[\mathcal{H} = \left\{ \begin{array}{ll} H_1, & \text{if } \max_{\theta} \sum_{n=1}^{N} \log f(y_n(t) | H_1(\theta)) > \eta \bowtie \max_{\theta} \sum_{n=1}^{N} \log f(y_n(t) | H_0(\theta)), \\
H_0, & \text{otherwise,} \end{array} \right. \]

- Key bottleneck
 \[\max_{\theta} \sum_{n=1}^{N} \log f(y_n(t) | H_1(\theta)) \]
- Depends on the entire sensed data.
- High-dimensional data exchange at all times.
- Involves batch processing; Detection cannot start until the maximizer is obtained

Distributed Approach

Assumptions
- (A.1) Global Observability: The sensing model is globally observable, i.e., any two distinct values of \(\theta \) and \(\theta' \) in the parameter space satisfy
 \[\sum_{n=1}^{N} \| h_n(\theta) - h_n(\theta') \|^2 = 0 \]
 if and only if \(\theta = \theta' \).
- (A.2) Network Connectivity: The inter-agent communication graph is connected, i.e., \(\lambda_2(L) > 0 \), where \(L \) denotes the associated graph Laplacian matrix.
- (A.3) Smoothness: For each agent \(n \), \(\forall \theta \neq \theta_1 \), the sensing functions \(h_n \) are continuously differentiable and Lipschitz continuous with constants \(k_n \), i.e.,
 \[\| h_n(\theta) - h_n(\theta_1) \| \leq k_n \| \theta - \theta_1 \| \]
- (A.4) Monotonicity: For each pair of \(\theta \) and \(\theta' \) with \(\theta \neq \theta' \), there exists a constant \(c' \) such that the following aggregate strict monotonicity condition holds
 \[\sum_{n=1}^{N} (\theta - \theta')^T (\nabla h_n(\theta) \Sigma_f^{-1} (h_n(\theta) - h_n(\theta'))) \geq c' \| \theta - \theta' \|^2. \]

CIGLRT: Consensus+Innovations GLRT Algorithm

Parameter Estimation Update
\[\theta(t+1) = \theta(t) - \frac{1}{t+1} \sum_{\ell=1}^{t} (\theta(\ell) - \theta(t)) + \alpha \nabla h_n(\theta(t)) \Sigma_f^{-1} (y(t) - h_n(\theta(t))) \]

The weight sequences \(\{\alpha_n\}_{n \geq 0} \) and \(\{\beta_n\}_{n \geq 0} \) are given by
\[\alpha_n = \frac{1}{(1+t)^2} \quad \beta_n = \frac{(t+1)^2}{t} \]

Decision Statistic Update
\[z_n(t+1) = \frac{1}{t+1} \left(z_n(t) - \delta \sum_{\ell=1}^{t} (z_n(\ell) - z(t)) \right) + \frac{1}{t+1} \log \frac{f_n(t)(y(t))}{f_n(\bar{y}(t))}, \]
\[\delta \in \left(0 \bigg\| \frac{2}{\lambda_2(L)} \right) \]

Decision Rule
\[H_0(t) = \left\{ \begin{array}{ll} H_0, & z_n(t) \leq \eta \\
H_1, & z_n(t) > \eta \end{array} \right. \]

Probability of Errors
\[P_{H_0}(t) = P_{H_0}(z_n(t) \leq \eta), \quad P_{H_1}(t) = P_{H_1}(z_n(t) > \eta) \]

Simulation Results
- Linear Scalar Model: \(h_n(\theta) = h_n(\theta_1) \)
- Network of 5 agents: 5 are defective, only observe noise.
- Scaling factors of the other 5 agents: 1, 1.5, 0.8, 2, 0.9
- \(\sigma^2 = 7.8 \), noise power = 3.
- Random geometric network: \(\| L - \frac{1}{5} I \|_2 = 0.9161 \)

Main Results

Asymptotic Normality and Error Analysis
- Theorem 1: Asymptotic Normality Consider the CIGLRT algorithm under Assumptions A.1-A.4, and the sequence \(\{a(t)\} \). We then have under \(P_{H_0} \), for all \(\| \theta' \| > 0 \),
 \[\sqrt{N} \left(z_n(t) - h^T(\theta') \Sigma_f^{-1} h(\theta') \right) \overset{D}{\rightarrow} N \left(0, \frac{h^T(\theta') \Sigma_f^{-1} h(\theta')}{N^2} \right), \]
 where \(\Sigma_f = I_N \otimes \theta' \), \(h(\theta') = [h_1(\theta'), \ldots, h_N(\theta')]^T \) and \(\overset{D}{\rightarrow} \) refers to convergence in distribution (weak convergence).

- Theorem 2: Error Analysis Consider the decision rule of CIGLRT. For all \(\theta' \) which satisfy \(h^T(\theta') \Sigma_f^{-1} h(\theta') < \frac{1}{k} \), we have the following choice of the thresholds \(\delta \approx 0 \) and \(\delta \approx \sqrt{N} \Sigma_f^{-1} h(\theta') \) for which we have that \(P_{H_0}(t) \rightarrow 0 \) and \(P_{H_1}(t) \rightarrow 0 \) as \(t \rightarrow \infty \). Specifically, \(P_{H_1}(t) \) decays to zero exponentially with the following large deviations exponent
 \[\limsup_{t \rightarrow \infty} \frac{1}{t} \log P_{H_1}(z_n(t) > \eta) \leq - LE(\min \{\Lambda^*, \lambda_2(L)\}), \]
 where \(LE(\lambda) = \frac{\lambda}{1+\sqrt{K}+\sqrt{N}} + \frac{\frac{1}{2}M_a^2 M_0}{1+\sqrt{K}+\sqrt{N}} \log \left(1 - \frac{\frac{1}{2}+\sqrt{K}+\sqrt{N}}{1+\sqrt{K}+\sqrt{N}} \right) \),
 \[\lambda^* = \frac{1}{2+\sqrt{K}+\sqrt{N}}, \quad \lambda = \frac{1}{2+\sqrt{K}+\sqrt{N}} \]