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Cyber Data Attacks
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State Estimation
Estimate the operating state of power systems from measurements. 
Detect and exclude erroneous measurements (bad data) to reduce the 
estimation error. 

Cyber data attack: first studied by Y. Liu, et al.[1],  means:
An intruder injects additive errors to multiple measurements.
The injected errors could bypass the bad data detector, thus potentially result in 
significant error in the estimated states.
Precondition: the intruder should have sufficient system information.
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An example of cyber data attacks: 
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Cyber Data Attacks
Existing research on cyber data attacks:

Identification and protection of a small number of key measurement 
units [T. Kim, et al. 2011, G. Dan, et al. 2010]

The measurements of protected units cannot be changed. Thus the intruder 
cannot launch cyber data attacks without access to some measurements. 

Detection of cyber data attacks [L. Liu, et al. 2014, H. Sedghi, et al. 2013, M. 
Wang, et al. 2014]

Exploit temporal correlations in the measurements to detected attacks

The potential financial risks of cyber data attacks [L. Xie, et al. 2011, L. Jia, 
et al. 2014]

Intruders inject errors to change the congestion state of some lines
Obtain reward from the resulting change of electricity price 
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Missing components in the study of cyber data attacks:
Frequency of data attacks in smart grids during one certain period.
Likelihood of attacks at a given system state.

Significance to system operators:
To evaluate the system vulnerability to cyber attacks
To help system operators defend against cyber data attacks.

Determine the buses/lines vulnerable to attacks in the system
Evaluate the factors affecting the likelihood of data attacks

We take the first step in the research to modelling and analyzing the 
likelihood of cyber data attacks. 



Problem Setups & Goals 

We study from the perspective of intruders, find the optimal 
attack strategy, and then conduct likelihood analysis.  

Attack motivation: financial profit in electricity market from 
successful attacks. 
Goal of intruders: find the optimal attack strategy maximizing the 
total reward. 
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The attack process occurs in a dynamic environment: 
Power system states evolve with time, independent of attacks.
States of PMUs: evolve with time as well, affected by attack actions. 
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State
st

Action at State 
st+1

Time step t

Probability P(st+1|st,at)
Reward R(st+1|st,at)

Action at+1

Time step t+1

Cost G(st,at) Cost G(st+1,at+1)

Model the intruder’s action process as a Markov Decision Process: 
(S, A, P, R, γ)

The optimal attack strategy, a mapping from states to actions, maximizes the 
expected net reward:

𝐸𝐸 �
𝑡𝑡=0

𝑇𝑇

𝛾𝛾𝑡𝑡 (𝑅𝑅 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 − 𝐺𝐺(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡))

With the solved optimal attack strategy, attack probability of one bus (line) = 
percentage of time when the bus (line) is under attack
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5 tuples of MDP: (S, A, P, R, γ)
State s: use the bus voltage magnitudes, angles and PMUs’ states 
together. 𝑠𝑠 = ( �𝑉𝑉, �̅�𝜃, �𝑈𝑈)

Discrete system states ( �𝑉𝑉, �̅�𝜃)
PMU state �𝑈𝑈: ‘0’ protected; ‘1’ open to attack

Action a: set of target buses, injected errors to bus voltage magnitudes 
and angels

Limited resource: the intruder can manipulate the voltage phasors of at most β
buses. 
The attacks can be detected with certain probability, which increases when the 
injected errors increase.

Reward r: results from the change of congestion states of lines
Action cost: proportional to the number of PMUs intruded
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5 tuples of MDP: (S, A, P, R, γ)
Transition probability of states of PMUs �𝑈𝑈: 
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Problem Formulation

We study the intruder’s attack actions with two different levels of knowledge 
about the power system states:

Known future system states
The intruder can predict the future system state for a short time. 
Consider how to act to maximize the expected reward during the period. 
Formulate as a finite-horizon MDP. 
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5 tuples of MDP: (S, A, P, R, γ)
Transition probability of system states ( �𝑉𝑉, �̅�𝜃): 

Known state transition probabilities of the power system
The intruder models the state evolution of power systems as Markov Chains. 
The system state transition probability are known to the intruder (e.g. learning 
from historical data).
Consider how to maximize the expected reward for the long run. 
Formulate as an infinite-horizon MDP.



Simulation

Power system topology
14 buses, 20 lines, 12 loads and 6 PMUs 
At each time step, at most two target buses
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Known future system states: 

Initial States of PMUs 
on Bus 2,4,6,7,10,13

Expected attack probability

Bus 1 Bus 7 Bus 10 Bus 13
0, 0, 0, 0, 0, 0 5.45% 7.35% 23.10% 3.05%
0, 0, 0, 1, 1, 1 5.45% 7.37% 23.18% 3.05%
1, 1, 1, 1, 1, 1 5.45% 7.40% 23.19% 3.05%
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System states are determined from the 
economic dispatch.

A slight variation in the expected attack probability of each bus when the initial 
states of PMUs vary. 
Bus 10 is the most vulnerable bus. 



Simulation

2015/12/10 Simulation 15

Known the transition probability of system states: 
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C: related to the attack detection probability. 
A larger C corresponds to a lower probability of attacks in the system. 
Parameter C increases, then an attack can be detected with a higher probability.  
The intruder should be more cautious to launch attacks.

Bus 10 is the most vulnerable bus. 
The line connecting bus 9 and 10 has a smaller reactance. 
The adversary only needs to intrude one PMU to manipulate the state of bus 10. 
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Attack cost: the cost to intruder one PMU. 
The attack cost increases, then the attack probability of the system decreases. 



Simulation

PT : the transition probability of PMUs from protected to unprotected. 
A larger PT corresponds to a higher attack probability. 

β: the maximal number of buses that the intruder can manipulate their states. 
In our settings, the order of buses by attack probabilities almost stays the same 
when 𝛽𝛽 changes.
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β PT Bus 1 Bus 7 Bus 10

1
0 0.16% 0.16% 0.15%

0.5 5.46% 7.42% 23.34%
1 8.03% 12.10% 27.67%

2
0 0.16% 0.16% 0.15%

0.5 5.45% 7.40% 23.19%
1 7.98% 19.44% 31.09%

3
0 0.16% 0.16% 0.15%

0.5 5.16% 6.87% 21.87%
1 7.59% 10.09% 30.53%
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Take the first step to analyzing the likelihood of cyber data attacks to 
power systems. 

Provide the operator with an analytical tool to evaluate the factors 
contributing to attack defense. 

Characterize the action of an intruder and model the attack action 
process as a Markov decision process.

Study the attack strategy and analyze the resulting attack probability 
with two different levels of intruders’ knowledge about power system 
states. 

Simulate on IEEE 14-bus system to validate our method and discuss 
four parameters affecting the data attacks. 
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Thank you!



State Estimation

State variable 𝑥𝑥 = (𝑉𝑉,𝜃𝜃), then the measurement z satisfying 𝑧𝑧 =
ℎ 𝑥𝑥 + 𝜔𝜔, where 𝜔𝜔 denotes the measurement noise.

Estimated state 

�𝑥𝑥 = argmin 𝑧𝑧 − ℎ 𝑥𝑥 𝑇𝑇𝑅𝑅−1 𝑧𝑧 − ℎ 𝑥𝑥 .

Bad data detection: 
𝑧𝑧 − ℎ �𝑥𝑥 𝑇𝑇𝑅𝑅−1 𝑧𝑧 − ℎ �𝑥𝑥 <

> 𝜏𝜏
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Attack Reward
From the discrete system states, get the upper and lower bound of 
real power of each line. If the congestion state of one line is changed 
after successful error injection, then we think there is a resulting 
reward. 

The reward is proportional to the gap between the flow limit and the 
power bounds with injected errors:  
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Attack Likelihood Analysis 

Attack probability of one bus (line) = the expected number of steps 
that the bus (line) is under attack during the horizon / the number of 
total steps in the horizon

For finite MDPs, we can compute directly. For infinite-horizon MDPs, 
based on the Law of Large Number, we can compute the distribution 
probability of each state. Then the attack probability of one bus (line) 
= the sum of distribution probabilities of states in which the bus (line) 
is one target bus (line)
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