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Background of 5G

Key requirement: 1000 folds of increase in data traffic
Three main directions
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Massive MIMO

% What is massive MIMO and why ?

» Use hundreds of antennas at the BS to simultaneously serve a set of users
» Increase the spectral and energy efficiency by orders of magnitude

AM Antennas

Base Station

UE

F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta and O. Edfors, “Scaling up MIMO: Opportunities
and challenges with very large arrays,” IEEE Signal Processing Magazine, vol.30, pp.40-60, 2013.
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Challenges

Efficient Pilot design and O G Reduced power
channel estimation algorithm Consumption of RF chains

Efficient channel

- 0 Capacity enhancement

feedback method in the uplink
Low-complexity (T) ) Low-complexity
capauty-gpproachlng near-optimal signal
precoding algorithm detection algorithm
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Motivation

high throughput —* high-order QAM

Y

reliable detection -—» high-precision ADC

Y

required by each RF chains

Y

power consumption is unaffordable
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Motivation

ML detector is optimal =» complexity increases exponentially

MMSE is suboptimal —» suffers from the matrix inversion

SD is near-optimal —>» cannot deal with the high-order QAM

What is more , all of them dealing with high-order QAM need

12-16 bits to achieve acceptable performance
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System Model
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System Model

€ Q(*) is the quantization operation
Y=Q(HX+N)

@ b-bit uniform quantizer. Q(¢) is defined as

: A A

rszgn(c)-([%]A+E) , el <G+E

r=Q(c) =1 sign(c)-G, |c|2G+§
A

kz ) c=0

where A= max(C)/2°~!is quantization step, and G=([|max(C)|/A])
Is saturation level.

& the upper and lower quantitative bounds for further detection:
+ oo, ifr=0G
B“p(r) - {r + % , Ootherwise
— 0, ifr=-G
Biow(r) = { A

r — > otherwise

GlobalSIP 2015



Estimation method

The approximate marginal distribution is calculated as
Py 1y (1Y) < p, () T2 Mo (x)).
Finally, the estimate X is computed as
52; = fx’p\ijly(leY)dx
In message passing algorithm, the messages are calculated as
My, x; (%)) < P, [y my,x (%))

t t—1
My, x; (xf) X fpylhx l_[k?ﬁ]' in“"k(xi)dx\j ’
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The factor-graph representation

€ Here , approximated message passing algorithm is exploited
to iteratively estimate the unknown vector.

P1—1(T1)
N(w; [Az], ™) ()

LAy

- LESY

N (w; [Az]a, v™)

Niyne; [Az|ar, ™) flzn)

Prre—n (Tx)

€ In Massive MIMO systems, the messages sent between the
transceiver nodes are assumed to approximately Gaussian
distributed.

@ Therefore can be calculated by their first and second order of
statistical properties, i.e. the expectation and the variance.
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MPDQ-hl algorithm

€ But in traditional message passing algorithm , the observation

vector Y is obtained directly.

€ In our scheme, Y is observed after b bit quantization, so we
proposed a method to estimate the vector Z before the quantization,
the expression are as follows:

D; =2 hisz thJ’f ',
vpt = Z . h 14
21: vpt_l_o.z(E[ullul € q 1(yl)] - t)
P | Var|u;|u;eq 1 (y))]
vz; = vpi+o? (- vpi+o? )

where the expectation and the variance are evaluated with respect to
u; ~ N(p;, vpt + a?).
q_l(yi):[ Blow(yi)’Bup(yi)]-
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MPDQ-hl algorithm

# Given the prior information p_, the received measurement signal Y,
the channel state information H, the noise variance o2, and the
mapping q of the quantizer Q(e), the estimation of X is shown below.

x —E[X|r vr],

vx; = Var[x| 7; vrt]
where the expectation and the variance are evaluated with respect to
At . ~t
p(x| 7}, vr}) o< N(x; 7, vr})p, (*).
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Complexity Analysis

¢ The MPDQ-hl algorithm is perfect dealing with non-linear system,
so is suitable for quantization problem, we exploit it for low-
precision problem.

€ The proposed algorithm reduces the complexity with just matrix
multiplication.

€ The complexity of the proposed scheme is proved to be one order
of magnitude smaller than that of conventional MMSE.

@ Its rapid convergence property is analyzed by MSE.
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Experimental Results

& Simulation parameters:

€ 256-QAM is utilized in the system.
® The data size L is 300.

# the iterative termination parameter tol is set as 1073.

€ The number of trials for each Monte Carlo simulation is 1000 times.

€ The proposed algorithm is compared with quantized MMSE
(QMMSE) and unquantized MMSE.
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Experimental Results
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Experimental Results
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Fig. 2. 128 X256 MIMO with different quantization bits
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Experimental Results
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Conclusion

@ In this paper, we have proposed the MPDQ-hl algorithm to detect
high-order QAM signals for massive MIMO systems with low-
precision quantization.

€ In 256-QAM systems, simulation results show that MPDQ-hl with 7
bits quantization could achieve better BER performance than
MMSE with full precision system, thus saving 3 bits or more by

comparison.
@ Compared with the conventional MMSE algorithm with the

complexity of O(N3), the complexity of MPDQ-hl can be reduced to
O(N?), where N is the number of transmitting antennas.

@ Its rapid convergence property is analyzed by MSE.

@ It can reduce the power consumption in Massive MIMO systems.
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