

# Mining Representative Actions for Actor Identification

Wenlong Xie, Hongxun Yao, Xiaoshuai Sun, Sicheng Zhao, Tingting Han, Cheng Pang

Harbin Institute of Technology, China wlxie@hit.edu.cn



#### □ Introduction

- □ Actor identification
- D Motivation
- □ Method
  - □ Can we extract representative actions of each actor from a movie?
  - How can these actions help for actor identification?

#### Experiments



#### Introduction

- □ Actor identification
- **D** Motivation
- **D** Method
  - **□** Can we extract representative actions of each actor from a movie?
  - How can these actions help for actor identification?

#### Experiments



### **Actor Identification**

Identification of characters in TV series or movies
Important for many higher level multi-media analysis tasks







# Motivation

Previous methods mainly focused on static features

- Perform poorly when the appearances of actors are hard to detect or changes greatly over time
- □ Try to mine some dynamic features for actor identification
- Using our method as complementary to formal method, performance improved



### What makes an actor impressive?



Faces Clothes Figures

Could it be vivid and dynamic?



### **Representative actions of** *Sheldon*













#### □ Introduction

- □ Actor identification
- D Motivation

#### Method

- □ Can we extract representative actions of each actor from a movie?
- How can these actions help for actor identification?

#### **D** Experiments



#### □ Introduction

- □ Actor identification
- D Motivation
- Method
  - □ Can we extract representative actions of each actor from a movie?
  - How can these actions help for actor identification?
- Experiments



# Mining representative actions





# **Prototype based representative action mining**

Representative actions:

- Occur frequently in same category
- **Distinguish** itself with others in **different** categories
- □ Prototype <sup>[1]</sup> based model:
  - Most representative of items inside
  - Least representative of items outside a category

[1] Rosch, "Principles of categorization," Concepts: core readings, pp. 189–206, 1999.



# **Prototype based representative action mining**

- □ Prototype: most represent inside, least represent outside
- □ Set *k*-means centers as the initial prototypes
- □ SVM to update the prototypes
  - positive exemplar  $\longleftrightarrow$  its prototypes
  - negative exemplar  $\longleftrightarrow$  other actors' prototypes
  - updated prototypes  $\iff$  actions with high test score



#### Algorithm 1: Prototype based representative action mining

**Input**: Actor number  $N_a$ , top  $N_r$  representative actions need to mine, BoW representation of each actor's actions  $H_i = \{hist_j\}_{j=1}^{N_i}, i = 1, ..., N_a$ , number of clustering centers k, threshold  $\theta$  to split prototypes with other actions **Output**: Representative actions index matrix  $\mathbf{R}(N_a, N_r)$ 1 for  $i = 1, ...N_a$  do Run k-means on  $H_i$  to obtain cluster centers  $C_i = \{c_j\}_{j=1}^k$ ;  $\rightarrow$  Prototypes initialize 2 3 end 4 Unite all the prototypes  $C = \{C_i\}_{i=1}^{N_a}$ ; 5 for  $i = 1, ..., N_a$  do  $Classifier_i \leftarrow trainSVM(C_i, C - \{C_i\}, cosine);$ 6  $score_i \leftarrow$  test all item in  $H_i$  with  $Classifier_i$ ; 7 Actions ranking Descending sort  $score_i$ ; 8  $N = \max\{j\}, \text{ s.t. } score_i(j) > 0;$ 9 if  $N \ge N_i * \theta$  then 10  $\mathbf{R}(i, N_r) \leftarrow$  index of top  $N_r$  ranking actions of  $score_i$ ; 11 break; 12 end 13  $C_i \leftarrow \text{corresponding top } k \text{ score actions in } H_i;$ 14 Prototypes update 15 end 16 return  $\mathbf{R}(N_a, N_r)$ ;



### **Representative actions mined by our algorithm**





### **Representative actions by human judgement**





# **Representative actions of** *Sheldon*



Chosen manually



Mined by algorithm



#### □ Introduction

- □ Actor identification
- Motivation

#### Method

□ Can we extract representative actions of each actor from a movie?

How can these actions help for actor identification?

Experiments



# Actor identification with representative actions



[2] Josef Sivic, Mark Everingham, and Andrew Zisserman, "who are you?-learning person specific classifiers from video," *CVPR*, 2009, pp. 1145–1152.



#### □ Introduction

- □ Actor identification
- D Motivation
- Method
  - □ Can we extract representative actions of each actor from a movie?
  - How can these actions help for actor identification?

#### **Experiments**



## **Experiments**



#### New dataset — **BigBangActions**

□ Each clip corresponds to an actor's action

- □ Five actors, each has around 1000 clips
- **D** Each clips contains 100 1000 frames



### Actor identification examples



A success, R success

#### Frontal face & Temporally stable



A failed, R success

#### Hard to detect face or not temporally stable

- **A** Appearance matching method
- **R** Representative actions matching method



# **Experiments**



- Consistent on different actors, average 75%
- Best performance on Sheldon

Confusion matrix of our proposed method for actor identification



# **Experiments**

| Method                 | Accuracy(%) |
|------------------------|-------------|
| Sivic et al. [2]       | 59.78       |
| Representative Actions | 34.81       |
| Combination            | 75.32       |

Performance comparison between the proposed method and the baseline based on actors' appearance

[2] Josef Sivic, Mark Everingham, and Andrew Zisserman, "who are you?-learning person specific classifiers from video," CVPR, 2009, pp. 1145–1152.



## Conclusion

- Proposed a prototype based method to mine representative actions
- Using representative actions as complementary, our method greatly improves the performance of actor identification
- Constructed a new dataset BigBangActions and will be released soon



# Thank you!

### wlxie@hit.edu.cn

