ON ADAPTIVE SELECTION OF ESTIMATION BANDWIDTH FOR ANALYSIS OF LOCALLY STATIONARY MULTIVARIATE PROCESSES

Maciej Niedźwiecki†, Marcin Ciolek† and Yoshinobu Kajikawa‡

†Faculty of Electronics, Telecommunications and Computer Science, Department of Automatic Control, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; ‡Department of Electrical and Electronic Engineering, Faculty of Engineering Science Kansai University, Suita-shi, Osaka 564-8680, Japan
maciekn@etj.pg.gda.pl, marcin.ciolek@pg.gda.pl and kaji@kansai-u.ac.jp

Abstract When estimating the correlation/spectral structure of a locally stationary process, one should choose the so-called estimation bandwidth, related to the effective width of the local analysis window. The choice should comply with the degree of signal nonstationarity. Too small bandwidth may result in an excessive estimation bias, while too large bandwidth may cause excessive estimation variance. The paper presents a novel method of adaptive bandwidth selection. The proposed approach is based on minimization of the crossvalidationatory performance measure for a local vector autoregressive signal model and, unlike the currently available methods, does not require assignment of any user-dependent decision thresholds.

Stationary multivariate processes

I. Consider a discrete stationary n-dimensional random signal

\[\{y(t), t = 1, \ldots, T\}, \quad y(t) = \{y_1(t), \ldots, y_n(t)\} \]

where t denotes the normalized discrete time. Suppose that the first n autocovariance matrices of $y(t)$ are known.

II. Vector autoregressive (VAR) signal model

\[y(t) + \sum_{k=1}^{p} A_k y(t-k) = e(t), \quad \text{where} \ A_k = \{A_{1k}, \ldots, A_{nk}\} \]

where $e(t)$ denotes n-dimensional white noise sequence with covariance matrix Σ_e and A_k denotes matrices of autocorrelation coefficients.

III. Link via the Yule-Walker equations

\[A_k = \{A_{1k}, \ldots, A_{nk}\} \]

where A_k is a bandwidth parameter.

IV. Maximum entropy spectrum

\[S_{\hat{f}}(f) = | \hat{A}^{-1}(f) \hat{A}(f)|^{-1} \]

where $\hat{A}(f) = 1 + \sum_{k=1}^{p} A_k \exp(-i2\pi ft)$ is the normalized angular frequency.