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Abstract-The estimation of location based on the time varying Electric Network Frequency (ENF) is 

a new emerging technology in Information Forensics. This requires the extraction of the ENF signal 

from multimedia recordings and a comparison with already known power grids from different 

locations. The decision making is possible using machine learning algorithms. In this report, we focus 

on ENF signal extraction and statistical modelling of ENF signals. We extract features and develop a 

classification system to accurately identify region-of-recording.  
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1. Introduction 

 
    The ENF (Electrical Network Frequency) analysis is used as a new forensic science technique in order 

to estimate the location of an audio or video recording. The nominal value of ENF is either 50 or 60 Hz, 

depending on the country, with 60 used mostly in North America and Japan and 50 in most other countries. 

However, the ENF is not steady but fluctuates over time due to variations in the demand and supply of 

electric power. These variations present a generally consistent trend within the same grid. ENF signals 

consist of changes in ENF over time and can be extracted from recordings either directly from a power 

socket or using a portable audio recorder. These recordings are segmented and processed in order to produce 

an estimation of the frequency at each segment. It has been shown that signals extracted from video or 

audio recordings are similar to concurrently recorded clean power signals. 

    Applications using ENF signals include detection of tampering or modifications in a multimedia signal, 

time and location-of-recording validation and region-of-recording identification. Our work focuses on the 

later application. As mentioned, multimedia signals show similarities with power references from the same 

grid. Working under the assumption that variations of the ENF are consistent within the same grid and 

differ among distinct countries, we extract statistical features from the signals in our database and develop 

a classification system to accurately identify the region-of-recording. 

 
Section 2 will provide an overview of the approaches used to extract the ENF signals from our recordings. 

Section 3 will provide details of the classification method used and our results. Finally, Section 4 will 

describe our implementation of the sensing circuit which is used for ENF acquisition. 

 

 

2. Extraction of ENF signals  
 

    We worked on two different sets of recordings, some consisting of signals acquired through hardware 

connected directly to a power socket using a step down transformer, thus effectively measuring the power 

grid, and some acquired using a battery powered digital recorder. In the latter occasion the recorder is 

influenced by surrounding power sources and such recordings tend to be more noisy, requiring different 

signal extraction techniques. We proceed to describe two different methods for extracting ENF signals, a 

simple zero crossings algorithm that has been proven adequate for direct-from-power-socket recordings [6] 

and a variation of the spectrum combining technique described in [2].  

 

(a)                                           (b)                                                      (c)                                                        (d) 

Figure 1 depicts one second of the recorded time signal and the corresponding spectrum for that second for a power (a, b) and 

an audio recording (c, d) 

 

    Our initial observation is that audio recordings tend to be more noisy than the ones made with a power 

recorder as is evident by both time and frequency domain plots, thus justifying our choice of different ENF 

extraction methods for different noise levels. We also observe that zero-noise recordings from the same 

grid present similar power levels around the ENF and its harmonics and that these levels vary among 

different grids. This variation is present in audio recordings as well, though it must be noted that power 

levels also differ between zero-noise and audio recordings of the same grid. 
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2.1 Zero crossings 
 

    Zero crossings is a method used by [6] that can produce a fast estimation of the frequency of a sinusoidal 

signal. Due to the time-varying nature of the ENF we apply our method to discrete overlapping frames, 

during which we consider the ENF to be stable. We empirically choose a time frame of 4096 samples, 1024 

of which are overlapping. Our implementation consists of the following steps: 

 

1. Estimate the central frequency of the signal, which is the frequency with the highest coefficient 

when the whole signal is decomposed in Fourier series. 

2. Filter the signal with a band-pass Butterworth filter with a 10 Hz pass-zone centered on its central 

frequency to remove harmonic content not related to the ENF. 

3. Divide the signal to overlapping frames of 4096 samples each, with overlap size 1024 samples. 

4. For each frame we find all samples x[k], x[k+1] that differ in sign and linearly interpolate 

between them to find the time of crossing. 

5. For two consecutive crossings we compute the difference between the respective times of 

crossing and acquire an estimation of the signal’s period and corresponding frequency. 

6. Average the computed frequencies to get an estimation of the ENF for that frame. 

 

   (a)          (b)                (c)   

 
                                 (d)          (e)               (f)  

 
(g)          (h)               (i)  

      Figure 3 Sample ENF signals extracted from the provided power recordings. 
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Figure 3 presents ENF signals extracted from the power recordings of our dataset using the afore-mentioned 

method. We can divide the grids of our database in two categories, based on their mean frequency; we have 

three grids with a mean frequency of 60 Hz and six with 50 Hz. Among the three grids with a base frequency 

of 60 Hz, grid A exhibits the lowest variations around its mean value. 

 

 

2.2 Spectrum combining 
 

   In section 2 we showed that audio recordings are more noisy and have a different harmonic content than 

recordings directly from a power socket. As a result the zero crossings method discussed in section 2.a fails 

to correctly extract the ENF. We use a variation of the method used in [2] and produce an ENF estimation 

by combining base and harmonic spectral bands each with a corresponding weight. Our implementation 

differs from [2] in that we choose to use the chirp Z-transform to approximate the maximum coefficient 

and the corresponding. The chirp Z-transform is the Z-transform of a signal along an arbitrary spinal 

contour. The contour used in each step of our algorithm is a segment of the unit circle, whose limits are 

specified by a range of 1 Hz around the frequency estimation computed in the previous step. This allows 

us to calculate the coefficients inside the area of interest with increased accuracy. 

Our implementation consists of the following steps: 

1. Calculation of the basic frequency of the recording. 

2. For the first eight harmonics of our signal, estimate the power density within a band close to the 

value of each harmonic. The power density outside of this narrow band within a range of 1 Hz is 

assumed to be noise. The boundaries of these bands for each harmonic increase accordingly. The 

resulting SNR of is used as combining weight. Only the two harmonics with the biggest weights 

are taken into account for the next steps to decrease computation time.  

3. Segment the signal into frames of 4096 samples, 1024 of them overlapping. 

4. Compute the chirp Z-transform for each segment around the two harmonics with the largest 

weights and use the frequency corresponding to the maximum value as the ENF estimation for 

that segment. 

5. Apply median filtering on the resulting signal to remove outliers. 

 
Figure 4 Sample ENF signals extracted from audio recordings using the method described above. 

 
                      (a)                                                  (b)                                             (c)                                                (d) 

Figure 5 Sample ENF signals (b, d) extracted from audio recordings show definite similarities to clean power signals (a, c).   
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3. Location classification/identification system 
 

3.1 System Design 
 

    In this section we describe the classification system used to identify region-of-recording. Our 

dataset consists of 9 different grids, therefore we must develop a multiclass classification scheme that 

could accurately differentiate between them. 

    As a first step we must choose features that could quantitatively describe our grids. We use sets of 

10 minute long segments of ENF signals. The features shown in Table 1 have been used in [1] and 

showed promising results. The mean value is chosen to separate classes of 50 and 60 Hz. Our initial 

observations on ENF signals suggest that the variance and range of each signal will be good predictors 

of its region-of-recording. We use a 9-level dyadic wavelet decomposition to get an approximation of 

the ENF signal and the details at different levels of resolutions. These features will help as capture 

the variations of the ENF among different grids.  

An autoregressive (AR) model is used to statistically model our signal. [1] proposes an AR model of 

order 2. The equation that describes our signal in this context is: 

 

s[n] = α1s[n − 1] + α2s[n − 2] + υ[n] 
 

We use α1, α2 and the variance of the innovation signal υ[n] as three feature values to distinguish ENF 

signals in how well they fit an AR model and in what manner.  

 
Table 1 Features used in our classification model 

Index Feautures 

1 Mean of ENF segment. 

2 log (variance) of ENF segment. 

3 log(range) of ENF segment. 

4 log (variance) of approximation after 

9-level wavelet analysis. 

5-13 log(variance) of nine levels of detail 

signal computed through 9-level 

wavelet analysis 

14-15 AR(2) model parameters α1 and α2 

16 log(variance) of the innovation signal 

after AR(2) modeling. 

 

The 16 features extracted from our segments must be normalized in order to avoid any bias caused by 

difference in the order of magnitude of our features. We use a standard normalization scheme, 

subtracting the mean value and dividing by the standard deviation of each feature column: 

μk =
1

N
∑ fi[k]

N

i=1

 

σk
2 =

1

N − 1
∑(fi[k] − μk)2

N

i=1

 

fi
′[k] =

fi[k] − μk

σk
 

Where we assume Ν to be the number of examples. The process is repeated for k = 1, 2,…, 16. The 

normalization parameters are stored to be applied to the testing examples.   
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                                   (a)                                                                                                              (b) 
Figure 6 Feature values for instances of training data from 50Hz grids (a) Features 1, 10 and 11. (b) Features 2, 7 and 14  

 
  

In figures 6, 7 we can see examples of features taken 

from different classes. We can see that 60 Hz grids 

form generally separable but overlapping clusters. 

Some of the 50 Hz grids also form distinct clusters, 

with grid B being easily distinguishable from the rest. 

Grids D, F, G, H can also be linearly separated as seen 

in figure 6b. However, since there is some amount of 

overlap it would be better to use a non-linear classifier 

that would better differentiate between different 

classes. 

 
 

 

Figure 7 Feature values for instances of training data 

 from 60Hz grids (Features 9, 12 and 13). 

    As mentioned, our database consists of both clean and noisy ENF signals. Previous work in this 

area [1] has shown that classification works better when a common classifier is used, trained on power 

and multimedia signals. We were able to confirm this fact, with common classifiers performing 

consistently better, yielding a lower error in cross-validation and when tested with the practice dataset. 

What is more, we were provided with very few multimedia recordings to build a separate classifier. 

Henceforth, our training dataset consists of features extracted from clean and noisy ENFs unles s 

otherwise mentioned. 

    Our supervised learning classifier makes use of Support Vector Machines (SVM). We use one-vs-

one classification and train a binary classifier for every possible pair of classes.  In our implementation 

we use MATLAB’s Statistics and Machine Learning toolbox to train our classifier and the 

Optimization toolbox to optimize its parameters. We train a multiclass SVM with the fitcecoc function 

and then pass it as argument to fminsearch, a function that performs unconstrained nonlinear 

optimization on a multi-variate scalar function, in order to minimize the cross-validation error. When 

initialized with a polynomial kernel of 2nd degree, which we assumed would adequately handle the 

nonlinearities present in our feature space, and default values specified for the fitcecoc function, the 



 

 

8 

 

optimization algorithm converges to a polynomial kernel of degree 2.0005 indicating that our 

hypothesis was correct. All other parameters are optimized as well. The minimum 10-fold cross-

validation error for our training dataset was 86.12%. When tested on the practice dataset we achieved 

a 90% classification rate. MATLAB also provides the ability to compute the posterior probabilities 

for our classifier, which serve as a confidence level for the classifier’s decision.  

    Due to the fact that our database contains varying amounts of recordings for each grids, our system 

would be more biased towards grids with more training examples. In order to counter this fact we  

used a weighted SVM. SVMs include a cost parameter, which is the penalty for misclassifying an 

example. This cost is the same for all classes by default, but in weighted SVM it depends on the 

weight of each class. We choose larger cost values for smaller classes by manipulating the weights as 

follows: 

wj =  
Nmin

Nj
 , for j = 1, 2, …, M and Nmin = minNj 

 

3.2 Classification results 
 

   Our method for classifying the practice and test dataset recordings consists of two steps. First , we 

must correctly extract the ENF from the given recordings. Since we are using different methods to 

estimate the ENF depending on whether we have a clean power signal or a multimedia recording, it 

is essential to differentiate between the two. A simple but effective method is to calculate the signal 

power over a band of frequencies that do not contain the frequencies 50 and 60 Hz and their 

harmonics. If the computed power is lower than an empirical threshold then the recording is assumed 

to be a clean ENF signal. This method has worked correctly for all the recordings in the three databases 

we worked with. After the recording’s noise conditions are estimated we extract the ENF signal using 

the appropriate algorithm as mentioned in section 2. Consequently, we segment the signal in 10-

minute frames and extract the features discussed in section 3. After appropriate normalization, we 

pass the testing example through our multiclass SVM and acquire a class prediction and posterior 

probabilities for all classes, which act as a confidence level for our classification. If the probability 

for the predicted class is lower than 0.45 then we classify the corresponding recording as not 

belonging to any of the 9 grids used for training. 

 
Table 2 Confusion Matrix of our classification (percentages) 

   

 

 

 

 

 

 

 

 

 

Table 2 shows the classification percentages for the training dataset using 10-fold cross-validation. It 

is evident that our classification systems accurately differentiates between grids of 50 and 60 Hz. This 

is a result of incorporating the mean ENF value as a feature. From the 60 Hz grids, C has the least 

overlap with the other two, as shown in figure 7, and therefore can be more easily identified by our 

classifier. We also achieve a 100% classification rate for grid B, which, as seen in figure 6, forms a 

distinct cluster from the other grids. What is more, none of the other grids are mistaken for grid B. In 

contrast, most misclassification errors are related with grid G, which is correctly classified only 

70.83% of the time and is the grid most commonly mistaken for other grids. 

Grids A B C D E F G H I 

A 83.3333 0 0 0 0 0 0 0 16.6667 

B 0 100 0 0 0 0 0 0 0 

C 4.1667 0 93.75 0 0 0 0 0 2.0833 

D 0 0 0 93.75 0 0 6.25 0 0 

E 0 0 0 2.1277 82.9787 2.1277 12.7660 0 0 

F 0 0 0 0 2.7027 83.7838 10.8108 2.7027 0 

G 0 0 0 2.0833 2.0833 10.4167 70.8333 14.5833 0 

H 0 0 0 0 0 2.1277 14.8936 82.9787 0 

I 14.2857 0 2.408 0 0 0 0 0 83.6735 
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    We then tested our classifier on the practice dataset. Using this scheme, we obtain a 90% 

classification rate. We further analyzed our results testing the error rate for audio and power 

recordings separately. Our classifier achieves a 95% correct identification on audio recordings and an 

86.6% rate on power recordings of the practice dataset. This was the best score we obtained for 

multimedia recordings after testing various classifications systems and led us to conclude on using an 

SVM trained on both power and audio recordings. 

   We then proceeded to pass the testing dataset through our classifier using the same method as the 

practice dataset. To sum up, for each recording we estimate the noise level, estimate the ENF signal 

using the appropriate algorithm, either zero crossings or spectrum combining, extract and normalize 

features and pass them through the trained classifier obtaining a prediction. If the confidence value is 

lower than 0.45 we assign the recording a None-of-the-above label, i.e. it does not belong to any of 

the 9 classes used for training. The results obtained for the training dataset are: 

 

NNDCD,NNDAF,INGBF,BFCEH,DHHNG,FFEAI,DNFHI,IECBD,ENIBG,FGNAG,IINCG,HAEF

C,CCFDG,CEIGI,EICEN,NEBHA,DINCG,AABIH,CNDBA,HBFBB 

 

A more detailed analysis of these results entailing the confidence levels for each label is contained in 

the “testing_results.txt” file included in our submission. 

 

 

4. Circuit design and data analysis for ENF acquisition 

 

   To record the power grid signal directly from a power socket we used the sensing circuit shown in 

figures 8, 9. The components used were a transformer, a glass fuse, a voltage divider, a high-pass 

filter and an anti-aliasing filter. The transformer decreases the voltage and provides galvanic isolation 

from the source to make further processing possible. For safety reasons we used a 400mA glass tube 

fuse. The voltage divider creates reference voltage of about 3Vp. The purpose of the high-pass filter 

is to offer high resistance to DC signals, so that only the AC component appears on the output with a 

cutoff frequency around 32Hz, while the anti-aliasing limits the bandwidth to 500 Hz. We used a 

potentiometer (R4) in order to be able to adjust the cutoff frequency of the anti-aliasing filter 

depending on the sampling rate of interest (R4-33k, 1 kHz).  Τhe signal is routed to the sound card 

through a 3.5 mm jack and can be recorded using appropriate software. In our implementation we 

used Audacity. We used a sampling rate of 1 kHz, consistent with the recordings of the provided 

dataset. The power consumption was calculated at 56 mWatt. 

 

 

 
Figure 8 Schematic diagram of the sensing circuit 
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Figure 9 Photo of our sensing circuit                        Figure 10   Frequency analysis οf one of our  recording  

 

Α frequency analysis of the data we recorded before their processing is shown in figure 10. Peaks at 50 Hz 

and higher harmonics indicate that the ENF signature is present in our recordings and the high SNR levels 

around those peaks suggest that the zero crossings algorithm described in section 2.a will yield appropriate 

results. 

 

 
Figure 11 ENF examples of our grid 

The ENF of our grid is quite similar to that of the most ENFs provided to us. The frequency is steady 

without fluctuations bigger than 0.1 Hz. Yet certain differences appear with those provides to us, whose 

frequency is more prone to changes. 

 

We also used the power recordings of our country and tried to classify them using the system discussed in 

section 3. Detailed results are included in the “RecordingClassification.txt” file of our submission. We 

segmented the 10 hours of recordings to 10 minute frames and passed them through the classifier using the 

same approach as with the test and practice datasets. The Greek grid is mostly misclassified into belonging 

to grids G and F. Some segments are also confused with grids D and E, but with lower frequency and 

generally lower confidence. Only a small portion is classified as not belonging to any of the 9 grids used 

for training. This indicates that our grid shows sufficient overlap with grids F and G, which is problematic 

for the classification. The overlap with D and E is considered to be in acceptable levels and should be 

attributed to expected errors of any machine learning system. 
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5. Conclusion 

 
    In this report we present our region-of-recording classification results on the dataset provided to 

participants of the 2016 IEEE Signal Processing Cup Competition. We developed two methods to 

accurately extract ENF signals from recordings based on their respective SNR levels. We showed that these 

methods can procure ENF signals with a high degree of similarity within the same grid. This allowed us to 

develop a classification system based on a statistical modelling of these signals to correctly identify region-

of-recording. The results obtained through cross-validation and on the provided practice dataset are 

satisfactory and in accord with results presented in [1].  

    As part of the competition we constructed an ENF sensing circuit presented in section 4. We were able 

to detect the ENF signature of the Greek grid using the same method chosen for clean recordings in the 

given dataset. This fact is an indication of our sensing circuit’s performance. To further test and compare 

the Greek grid to the others in our databased we passed it through the classifier developed in section 3. 

However, the results were not appropriate, as our systems to identify the Greek grid as not belonging to the 

classes used for training. This raises concerns about our classification system’s ability to respond to grids 

not belonging to the datasets we used and should be further investigated. 

    For our future work, we intend to continue working on ENF extraction and region-of-recording 

classification. We believe that there is potential for algorithm improvement in ENF extraction from noisy 

recordings, especially in recordings with low SNRs. We would also like to investigate the possibility of 

identifying the region-of-recording within the same grid using simultaneous recordings from different cities 

that belong to different sub-grids. 
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