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Sattva(ÞĕĕÛ) means Purity



Introduction

ÅThe number of malware is 
increasing!

ÅIn 2014, Kaspersky Lab reported 
they process on average 325,000 
malware per day

ÅThe main reason for such a deluge 
is:
malware mutation: the process of  
creating new malware from existing 
ones
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http:// usa.kaspersky.com/about-us/press-center/press-releases/kaspersky-lab-detecting-325000-
new-malicious-files-every-day
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Introduction

ÅVariants are created either by making small changes to the malware 
code or by changing the structure of the code using executable 
packers

ÅBased on their function, variants are classified into different malware 
families

ÅIdentifying the family of a malware plays an important role in 
understanding and thwarting new attacks
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Examples of malware variants

Variants of Family Alueron.gen!J Variants of Family Fakerean



Problem Statement

ÅConsider a Malware Dataset comprising of:

ÅN labelled malware 

ÅL malware families 

ÅP malware per family

ÅProblem is to identify the family of an unknown malware Ἵ
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Related Work

ÅStatic Code analysis based features
ÅDisassembles the executable code and studies its control flow
ÅSuffers from obfuscation (packing)

ÅDynamic analysis based features
ÅExecutes malware in a virtual environment and studies its behavior
ÅTime consuming and many recent aware are VM aware

ÅStatistical and Content based features
ÅAnalyzes statistical patterns based on the malware content
Ån-grams, fuzzy hashing, Image similarity based features
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Statistical and Content based Features

Ån-grams
Ån-grams are computed either on raw bytes or instructions

Ån > 1 which makes this computationally expensive

ÅFuzzy hashing (ssdeep, pehash)
ÅFuzzy hashes are computed on raw bytes or PE parsed data 

ÅDoes not work well on packed malware

ÅImage similarity
ÅMalware binaries are converted to digital images

ÅImage Similarity features (GIST) are computed on the malware

7Malware Images: Visualization and Automatic Classification, L. Nataraj, S.Karthikeyan, G. Jacob, B.S. Manjunath, VizSec2011
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Image Similarity based Features

ÅPros
ÅFast and compact

ÅBetter than static code based analysis (works on both packed and unpacked 
malware)

ÅComparable with dynamic analysis

ÅCons
ÅArbitrary column cutting and reshaping

ÅImages are resized to a small size for normalization which introduces 
interpolation artifacts

ÅA large malware image, on resizing, lose lots of information
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Approach ςSignal Representation

ÅLet ὀbe the signal representation of a malware sample

ÅEvery entry of ὀis a byte value of the sample in the range [0,255]
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Variants in Signal Representation

11Variants of recently exposed Reginmalware. Differ only in 7 out of 13,284 (0.0527%)

Variant 1

Variant 2



Approach ςDataset as a Matrix

ÅSince malware are of different sizes, the vectors are zero padded such 
that all vectors are of length M, the number of bytes in the largest 
malware.

ÅWe now represent the dataset as an ὓ ὔmatrix A, where every 
column of A is a malware sample
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Approach ςDataset as a Matrix

ÅFurther, for every family k, (k Ґ мΣнΣΧΣ[ύΣ ǿŜ ŘŜŦƛƴŜ ŀƴ M x Pblock 
matrix ὃȡ

Ἃ ὀ ȟὀ ȟȣȟὀ

ÅἋcan now be represented as a concatenation of block matrices:

Ἃ ἋȟἋȟȣȟἋ
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Approach ςSparse Linear Combination

ÅLet Ἵᶰ2 be an unknown malware test sample whose family is to 
be determined.

ÅThen Ἵcan be represented as a sparse linear combination of the 
training samples:

Ἵ ‌● Ἃ♪

where  ♪= [‌ ȟ‌ ȟȣȟ‌ȟȣȟ‌ is the coefficient vector
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Approach ςSparse Linear Combination
Ἵ Ἃ♪
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Illustration

ÅLet the unknown malware belong to family 2

‌ +‌
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Approach ςSparse Solution

ÅSparsest solution can be obtained by Basis Pursuit by solving the ὰ-
normminimization problem:

♪ ÁÒÇÍÉÎ
ᶰ

ȿȿ♪ȿȿ ίόὦὮὩὧὸὸέἽ Ἃ♪

where ȿȿȢȿȿrepresents the ὰ-norm
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Approach ςMinimal Residue

ÅTo estimate the family of Ἵ, we compute residues for 
every family in the training set and then choose the 
family with minimal residue:

ὶἽ ȿȿἽ Ἃ
▓
♪ȿȿ

Ἣ ÁÒÇÍÉÎὶἽ

where Б▓♪ is the characteristic function that selects 
coefficients from ♪that are associated with family k and 
zeros out the rest, Ἣis the index of the estimated family
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Random Projections

ÅDimensionality of malware M can be high

ÅWe project all the malware to lower dimensions using Random 
Projections:

Ἷ ἠἽ ἠἋ♪

where ἠis a Ὀ ὓpseudo random matrix (ὈḺὓ and Ἷis a Ὀ ρ
lower dimensional vector 
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Sparse Solution

ÅThe system of equations are underdetermined and can be solved 
using ὰ-normminimization:

♪ ÁÒÇÍÉÎ
ᶰ

ȿȿ♪ȿȿ ίόὦὮὩὧὸὸέἿ ἠἋ♪
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Modeling Malware Variants

ÅNew variants are created from existing malware samples by making 
small changes and both variants share code

ÅWe model a malware variant as:

Ἵ Ἵ ἭἽ Ἃ♪ ἭἽ

whereἽ is the vector representing malware variant and ἭἽis the error 
vector 
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Modeling Malware Variants

ÅThis can be expressed in matrix form as:

Ἵ Ἃ ἓ╜
♪
ἭἽ

ἌἽἻἽ

where ἌἽ Ἃ ἓ╜ is an ὓ ὔ ὓ matrix, ἓ╜ is an ὓ ὓ
Identity matrix,  and ἻἽ ♪ ἭἽ╣

ÅThis ensures that the above system of equations is always 
underdeterminedand spare solutions can be obtained
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Sparse Solutions in Lower Dimensions

♪ ÁÒÇÍÉÎ
ᶰ

ȿȿ♪ȿȿ ίόὦὮὩὧὸὸέἿ ἌἿἻἿ

ὶἿ ȿȿἿ ἌἿἻἿ
▓
♪ȿȿ

Ἣ ÁÒÇÍÉÎὶἿ

where Ἷ Ἷ ▄Ἷ ἠἽ ▄Ἷ,  ἌἿ ἠἋ♪ ἓ╓ is a Ὀ ὔ Ὀ
matrix, ἓ╓ is a Ὀ ὈIdentity matrix  and ἻἿ ♪ ἭἿ ╣.
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