On the Superposition Modulation for OFDM-based Optical Wireless Communication

MOHAMED SUFYAN ISLIM, DOBROSLAV TSONEV AND HARALD HAAS

Institute of Digital Communications
Li-Fi R&D Centre
The University of Edinburgh, UK
{m.islim, d.tsonev, h.haas}@ed.ac.uk

GlobalSP: 3rd IEEE Global Conference on Signal & Information Processing
Orlando, Florida, USA December 14-16 2015
Outline

- Introduction
- ACO-OFDM
- Enhanced ACO-OFDM
- Performance Comparison
- Conclusion
Introduction
Looming Spectrum Crisis

- RF spectrum is limited.
- Visible light spectrum is an unregulated potential solution to the looming Spectrum Crisis.

Visible Light Communications (VLC)

- Existing lighting infrastructure reuse
- High security, no harmful interference.
- Potential energy savings.
- Remarkable experimental results for VLC:
 - > 3.5 Gbit/s with a single 50-µm LED. [2]
 - > 14 Gbit/s with RGB LD [3]
 - > 224 Gbit/s 3m Li-Fi link [4]

Physical Constraints of VLC

- Incoherent off-the-shelf white LEDs are most likely candidates for front-end devices => Only Intensity modulation and direct detection (IM/DD) is possible.
- OOK, M-PPM, PWM and M-PAM implemented in a straightforward fashion.
- High data rates require ISI-resilient scheme => OFDM is more suitable.
- Conventional OFDM is bipolar and complex => Hermitian symmetry.
DCO-OFDM Signal Generation

- A DC bias required for the generation of unipolar signals.
- DC bias increases the energy consumption.
- Energy saved with inherently unipolar techniques such as: ACO-OFDM, PAM-DMT, Flip-OFDM, U-OFDM.
Asymmetrically clipped optical OFDM (ACO-OFDM) (Review)
ACO-OFDM Generation (1/2)

- Sub-carriers are loaded on the odd sub-carriers

\[x[n] = -x[n + N/2] \]

N is the size of the OFDM frame
ACO-OFDM Generation (2/2)

- Clipping distortion affect only the even-indexed sub-carriers [5]:

\[x^c(n) = \frac{x(n) + |x(n)|}{2} \]

Distortion term \(|x(n)|\) has the property

\[|x(n)| = |x(n + N/2)| \]

Clipping distortion is orthogonal to the information

Enhanced ACO-OFDM
Spectral/Power efficiency problem

- The spectral efficiency of ACO-OFDM is half of the spectral efficiency of DCO-OFDM:

\[\eta_{ACO} = \frac{\eta_{DCO}}{2} = \frac{\log_2(M)N}{4(N + N_{CP})} \]

- The performance of \(M\)-QAM DCO-OFDM is equivalent to the performance of \(M^2\) –QAM ACO-OFDM, therefore, the performance of ACO-OFDM degrades as the spectral efficiency increases.

- For example: The BER performance of 32-QAM DCO-OFDM is equivalent to the BER performance of 1024-QAM ACO-OFDM.
System Design (eACO-OFDM Tx)

- Multiple information streams of ACO-OFDM can be combined as long as the Inter-Stream-Interference falls into the even-indexed subcarriers. \[|x(n)| = |x(n + N / 2)| \]

Depth-1
- M-QAM → Odd-index loading → N-IFFT → Clip & Scale → \(x_1^c(n) \)

Depth-2
- M-QAM → Odd-index loading → N/2-IFFT → Repeat 2 times & Clip & Scale → \(x_2^c(n) \)

Depth-\(d \)
- M-QAM → Odd-index loading → N/2^{d-1}-IFFT → Repeat \(2^{d-1}\) times & Clip & Scale → \(x_d^c(n) \)

Cyclic prefixes are ignored in this illustration.
System Design (eACO-OFDM waveforms)

- Notations: A_{dl} and B_{dl} are the first and second subframes of the l-th frame time domain ACO-OFDM waveform at depth-d.

Depth 1

- B_{11}

Depth 2

- B_{21}
- A_{21}
- B_{21}
- A_{21}

Depth 3

- B_{31}
- A_{31}
- B_{31}
- A_{31}
- B_{31}
- A_{31}

- All additional streams should have the symmetry: $|x(n)| = |x(n + N / 2)|$

Cyclic prefixes are ignored in this illustration.
System Design (eACO-OFDM Rx)

\[y(n) \]

\[\sum \]

\[\tilde{x}_1^c(n) \]

- N-FFT
 - Odd-index subcarriers
 - Depth-1 M-QAM Symbols
 - Depth-1 Remodulation

\[\frac{N}{2^{d-1}}\text{-FFT} \]

- Odd-index subcarriers
- Depth-d M-QAM Symbols
Spectral efficiency

- The spectral efficiency at each depth is:
 \[\eta_{ACO}(d) = \frac{\log_2(M_d)N}{2^{d+1}(N+N_{CP})} \text{ bits/s/Hz,} \]

- The spectral efficiency of eACO-OFDM is:
 \[\eta_{eACO}(D) = \sum_{d=1}^{D} \eta_{ACO}(d) \]

- In order to match the spectral efficiency of DCO-OFDM, the constellation sizes at each depth should follow the constraint:
 \[\log_2(M_{DCO}) = \sum_{d=1}^{D} \frac{\log_2(M_d)}{2^d}, \]

The ratio of the spectral efficiency of eACO-OFDM to the spectral efficiency of DCO-OFDM.
Performance Comparison
Theoretical Performance Model

Theoretical performance bound has been established for BER at depth-d:

\[
\text{BER}_{eACO}^{(D,d,\gamma)} \approx \frac{4}{\log_2(M_d)} \left(1 - \frac{1}{\sqrt{M_d}}\right) \times \sum_{l=1}^{R} \sum_{k=1}^{N} \Phi \left((2l-1)\sqrt{\frac{3|\Lambda_k|^2 E_{b,\text{elec}} \log_2(M_d)}{2\alpha_{\text{elec}}^{eACO}(D,d)(M_d - 1)N_o}}\right)
\]

where \(E_{b,\text{elec}}/N_o\) is the electrical SNR of real OFDM, \(R = \min(2, \sqrt{M_d})\), \(\Lambda\) is an \(N \times N\) diagonal matrix with the Eigen values of the channel, and \(\alpha_{\text{elec}}^{eACO}(D,d)\) is the eACO-OFDM SNR penalty per bit compared to ACO-OFDM:

The average BER can derived by taking into account the spectral contribution of each depth \(\xi_d\):

\[
\text{BER}_{eACO} \approx \sum_{d=1}^{D} \left(\text{BER}_{eACO}^{(D,d,\gamma)} \xi_d\right)
\]
Electrical Energy Efficiency (Flat ch.)
Optical Power Efficiency (Flat ch.)
Electrical Energy Efficiency (Nonflat ch.)
Optical Power Efficiency (Nonflat ch.)

\[
\text{BER} = \frac{E_{b,\text{opt}}}{N_0} \quad [\text{dB}]
\]

\[
\eta = 1.5 \quad \eta = 4.5
\]
Conclusion

- The ACO-OFDM modulation scheme BER performance degrades as the spectral efficiency increases.
- The enhanced ACO-OFDM proposes a significant electrical energy savings at an equivalent optical energy dissipation (Illumination).
- The optimal combinations of constellation sizes at each depth and their corresponding scaling factors have been determined at different spectral efficiencies.
- The modulation scheme is not limited to OWC only, but applies to any IM/DD system.
Thank you!!!

Questions?