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Summary 

 

Recreating a natural listening experience is the aim of spatial audio 

reproduction of recorded audio content using playback devices, such as 

loudspeakers and headphones. Majority of the legacy audio contents are in 

channel-based format, which is dependent on the desired playback system. 

Considering the diversity of today’s playback systems, the quality of 

reproduced sound scenes degrades significantly when mismatches between the 

audio content and the playback system occur. With the aim to solve this 

pressing issue and improve human’s listening experience, this thesis focuses on 

the development of an efficient, flexible, and immersive spatial audio 

reproduction system based on primary ambient extraction (PAE).  

Inspired by the human auditory system, the sound scene is considered as the 

mixture of a foreground sound (primary component, directional) and a 

background sound (ambient component, diffuse). The primary and ambient 

components are rendered separately to preserve their spatial characteristics, in 

accordance with the actual playback configurations. The core problem is how to 

extract the primary and ambient components from channel-based audio content 

efficiently. To answer this question, this thesis begins with the fundamentals of 

spatial hearing, and reviews existing spatial audio reproduction techniques, as 

well as prior arts in primary ambient extraction. The focus of this thesis is to 

enhance the performance of PAE in various scenarios encountered in practice. 

Existing PAE approaches, such as the principal component analysis (PCA) 

and the least-squares (LS) method, though widely used, were not well studied. 
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To fill in this gap, these existing PAE approaches are generalized into a linear 

estimation framework. Under this framework, a series of performance measures 

are proposed to identify the components that contribute to the extraction error. 

Finally, a comprehensive comparative study and experimental testing of the 

linear estimation based PAE approaches, including PCA, LS, and three 

proposed variants of the LS, are presented. 

Previous studies revealed that these state-of-the-art PAE approaches suffer 

from severe extraction error when dealing with sound mixtures that contain a 

relatively strong ambient component, a commonly encountered case in the 

sound scenes of digital media. To improve the PAE performance, we propose a 

novel ambient spectrum estimation (ASE) framework. The ASE framework 

exploits the equal magnitude of the uncorrelated ambient components in two 

channels of a stereo signal, and reformulates the PAE problem into the problem 

of estimating either ambient phase or magnitude. In particular, we take 

advantage of the sparse characteristic of the primary components to derive 

sparse-constrained solutions for ASE based PAE, as well as an approximate but 

efficient solution. The objective and subjective experiment results indicated a 

significantly better performance of the proposed ASE approaches over existing 

approaches, especially when the ambient component is relatively strong. 

Considering most of these existing PAE approaches are mainly based on a 

basic stereo signal model, it is necessary to study PAE on input signals that do 

not satisfy the model assumptions. Taking PCA as a representative of PAE 

approaches, this thesis further investigates the performance degradation of PAE 

with respect to the correlation of the primary components in the cases with 

partially correlated primary components. To alleviate such performance 
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degradation, a time-shifting technique is proposed by time-shifting the input 

signal according to the estimated inter-channel time difference of the primary 

component prior to the signal decomposition using conventional PAE 

approaches. The switching artifacts, caused by varied time-shifting in 

successive frames, can be avoided using overlapped output mapping. 

Comparative experimental results validate the improved performance of the 

time-shifting based PAE approaches. 

In practice, the complex audio scenes could even include multiple 

concurrent sources in the primary components. Subband techniques are 

commonly implemented in PAE to deal with such signals. The effect of 

subband decomposition on PAE is investigated. The results indicate that the 

partitioning of the frequency bins is very critical in PAE and the proposed 

top-down adaptive partitioning method achieves superior performance, as 

compared to the conventional partitioning methods. Moreover, we also 

extended the time-shifting technique to multiple shifts. It is found that the 

consecutive multi-shift PAE with proper weighting yields more robust results. 

Finally, we introduce an important concept of natural sound rendering for 

rendering spatial sound over headphones, where PAE is one integral part. 

In conclusion, several advancements on PAE are presented. Objective and 

subjective evaluations validate the feasibility of applying PAE in spatial audio 

reproduction. With these advanced PAE approaches readily applied, the 

listeners can thus immerse him/her-self in the reproduced sound scenes, without 

the limitation on the audio contents or playback systems.  
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Chapter 1 

Introduction 

 

1.1 Research area and motivation 

Sound is an inherent part of our everyday lives for information, 

communication and interaction. Sound improves the situational awareness by 

providing feedback for actions and situations that are out of the view of the 

listener. An advantage of sound is that multiple sound sources can be perceived 

from any location around the head in the three dimensional (3D) space [Beg00]. 

The role of natural 3D sound, or spatial sound, is very essential in high stress 

applications, like flight navigation and communication systems [Air15], 

[BWG10]. Naturally rendered spatial sound has also been proven to be 

beneficial in personal route guidance for visually impaired people [LMG05], 

[Mic14] and in medical therapy for patients [DLH03], [ASI08], [SPL10]. Last 

but not least, the ever growing market of consumer electronics calls for spatial 

audio reproduction for digital media, such as movies, games, and virtual reality 

applications (e.g., Oculus Rift), augmented reality applications (e.g., Microsoft 

HoloLens).  

Considering the variety of applications, spatial audio reproduction of digital 

media (especially the movies and video games) has gained significant 

popularity over the recent years [ITU12b]. The reproduction methods generally 
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differ in the formats of audio content. Despite the growing interest in 

object-based audio formats [ITU12b], such as Dolby ATMOS [Dol13], DTS 

multi-dimensional audio (DTS: X) [JoF11], most existing digital media content 

is still in channel-based formats (such as stereo and multichannel signals). The 

channel-based audio is usually specific in its playback configuration, and it 

does not support flexible playback configurations in domestic or personal 

listening circumstances [ITU12b]. Considering the wide diversity of today’s 

playback systems [HHK14], it becomes necessary to process audio signals such 

that the reproduction of the audio content is not only compatible with various 

playback systems, but also able to achieve the best quality (especially spatial 

quality [Rum02]) with the actual playback system [Rum11]. In line with the 

objective of the new MPEG-H standard for 3D audio [HHK14], this thesis aims 

to achieve a flexible, efficient, and immersive spatial audio reproduction.  

Depending on the actual playback system, the challenges in spatial audio 

reproduction can be broadly categorized into two main types: loudspeaker 

playback and headphone playback [Rum13]. The challenge in loudspeaker 

playback mainly arises from the mismatch of loudspeaker playback systems in 

home theater applications, where the number of loudspeakers [Rum01] or even 

the type of loudspeakers [GTK11], [TaG12], [TGC12] between the intended 

loudspeaker system (based on the audio content) and the actual loudspeaker 

system is different. Conventional techniques to solve this challenge are often 

referred to as audio remixing (i.e., down-mix and up-mix), for example, “Left 

only, Right only (LoRo)”, “Left total, Right total (LtRt)”, matrix-based mixing 

surround sound systems, etc. [Rum01], [BaS07], [Ger92], [ITU93]. These audio 

remixing techniques basically compute the loudspeaker signals as the weighted 
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sums of the input signals. For headphone playback, the challenge arises when 

the audio content is not tailored for headphone playback (usually intended for 

loudspeaker playback). Virtualization is often regarded as the technique to solve 

this challenge [Beg00], where virtualization of loudspeakers is achieved by 

binaural rendering, i.e., convolving the channel-based signals with head-related 

impulse responses (HRIRs) of the corresponding loudspeaker positions. These 

conventional techniques in spatial audio reproduction are capable of solving the 

compatibility issue, but the spatial quality of the reproduced sound scene is 

usually limited [BaS07], [BrS08], [BrF07], [ZiR03]. To improve the spatial 

quality of the sound reproduction, the MPEG audio standardization group 

proposed MPEG Surround and related techniques, which typically address the 

multichannel and binaural audio reproduction problem based on human 

perception [BrF07], [FaB03], [Fal04]. In the synthesis, these techniques usually 

employ the one-channel down-mixed signal and the spatial cues, which better 

suit the reproduction of the distinct directional source signals as compared to 

the diffuse signals [BrF07], [GoJ07b]. 

To further improve the quality of the reproduced sound scene, the 

perception of the sound scenes is considered as a combination of the foreground 

sound and background sound [StM15], which are often referred to as primary 

(or direct) and ambient (or diffuse) components, respectively [GoJ08], [HTG14], 

[SHT15], [KTT15]. The primary components consist of point-like directional 

sound sources, whereas the ambient components are made up of diffuse 

environmental sound, such as the reverberation, applause, or nature sound like 

waterfall [GoJ07b], [AvJ04]. Due to the perceptual differences between the 

primary and ambient components, different rendering schemes should be 
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applied to the primary and ambient components for optimal spatial audio 

reproduction of sound scenes [GoJ07b], [MeF10]. However, the existing 

channel-based audio formats provide only the mixed signals [Hol08], which 

necessitate the process of extracting primary and ambient components from the 

mixed signals. This extraction process is usually known as the primary ambient 

extraction (PAE).  

As a spatial audio processing tool [Rum01], [BrS08], [GoJ07b], [BrF07], 

[SHT15], [MeF10], PAE can also be incorporated into spatial audio coding 

systems, such as spatial audio scene coding [GoJ08], [JMG07], and directional 

audio coding [Pul07]. Essentially, PAE serves as a front-end to facilitate 

flexible, efficient, and immersive spatial audio reproduction. First, by 

decomposing the primary and ambient components of the sound scene, PAE 

enables the sound reproduction format to be independent of the input format, 

hence increasing the flexibility of spatial audio reproduction [JMG07], 

[Rum10]. Second, PAE based reproduction of sound scenes does not require the 

individual sound objects as in object-based format (which is the most flexible), 

but is able to recreate perceptually similar sound scenes, hence maintaining the 

efficiency of spatial audio reproduction [HTG14]. Last but not least, PAE 

extracts the two key components of the sound scenes, namely, directional and 

diffuse sound components. These components are highly useful in recreating an 

immersive listening experience of the sound scene [GoJ08], [JPL10], [UsB07], 

[Fal07], [KKM15]. 

Figure 1.1 illustrates the PAE based spatial audio reproduction system, 

where the primary and ambient components undergo different rendering 

schemes [HGT14]. The rendering schemes differ for loudspeaker or headphone 
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playback [AvJ04], [JPL10], [FaB11]. For loudspeaker playback, the primary 

components are reproduced using vector base amplitude panning (VBAP) 

[Pul97] or vector base intensity panning [GoJ06], [JLP99] to reproduce the 

accurate direction of the sound sources. The ambient components, on the other 

hand, are further decorrelated and distributed to all the loudspeaker channels to 

create an envelopment effect of the sound environment [GoJ08], [Fal06]. For 

headphone playback, the conventional virtualization that simply applies 

binaural rendering to the mixed channel-based signals suffers from virtual 

phantom effect as discussed in [BrS08], [GoJ07b]. PAE based virtualization 

resolves this problem by applying binaural rendering to the extracted primary 

components, creating accurate virtual sound sources in the desired directions 

[GoJ07b] for headphone playback [SHT15], [LBP14]. Similar to the 

loudspeaker playback case, the ambient components are decorrelated using 

artificial reverberation [BrF07], [GoJ08], [AvJ04], [MeF10] to create a more 

natural sound environment. 

 

PAEInput
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Figure 1.1 Block diagram of PAE based spatial audio reproduction 
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1.2 Objective 

With the aim of improving humans’ listening experience, an efficient, 

flexible, and immersive spatial audio reproduction using primary ambient 

extraction is the core objective of this thesis work, which can be divided into 

the following four aspects. 

Firstly, due to the lack of systematical study of the existing PAE approaches, 

the relationships and the performance of these PAE approaches are unclear. 

This lack of theoretical knowledge hinders the development of better PAE 

approaches to improve the quality of spatial audio reproduction. Therefore, it is 

necessary to conduct a comprehensive evaluation of the existing PAE 

approaches. 

Secondly, it is important to understand the drawbacks of the existing PAE 

approaches in certain cases and their appropriate application scenarios. 

Furthermore, the fundamental reasons for these drawbacks and how these 

drawbacks can be tackled need to be investigated.  

Thirdly, an effective PAE approach must also be able to handle complex 

practical signals that may not match all the assumptions of the basic signal 

model. To improve the robustness of PAE, more complex signal models are 

considered and the performance of conventional PAE approaches (proposed for 

the basic signal model) shall be investigated. Techniques that can improve PAE 

performance in the complex cases are of particular interests in this thesis.  

Lastly, it is important to address how to apply PAE in spatial audio 

reproduction systems. Take headphone playback as an example, it shall be 

investigated how PAE can be applied, in combination with other techniques, to 

achieve a more natural listening experience. 
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1.3 Major contributions of this thesis 

This thesis focuses on the study and development of primary ambient 

extraction techniques for efficient, flexible, and immersive spatial audio 

reproduction. Its major contributions are highlighted as follows: 

I. Investigation of linear estimation based primary ambient extraction 

under the basic signal model. First, we propose a linear estimation 

framework for PAE that generalizes existing PAE approaches, such as 

principal component analysis and least-squares. Secondly, two groups of 

measures are introduced to yield a more complete performance 

evaluation of the timbre and spatial quality of the PAE approaches. 

Thirdly, three variants of least-squares based PAE approaches are 

proposed, and a comprehensive evaluation and comparison of all these 

linear estimation based PAE approaches are conducted. Finally, we 

provide practical guidelines in selecting the proper PAE approaches in 

different spatial audio applications. 

II. Improving PAE performance for strong ambient power cases using 

ambient spectrum estimation techniques. The performance of linear 

estimation based PAE approaches is inferior in strong ambient power 

cases, due to the limitations to cancel the uncorrelated ambient 

components without distorting the primary components. To circumvent 

this problem, we propose a new ambient spectrum estimation 

framework that reformulates the PAE problem as the problem of 

estimating ambient phase or magnitude. Solutions to ambient spectrum 

estimation are obtained by exploiting the sparsity of the primary 

components in the time-frequency domain. Computational complexity 
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and robustness of the ambient spectrum estimation based PAE 

approaches are further investigated. To facilitate the detailed objective 

performance analysis using performance measures introduced in earlier 

work, an optimization method is proposed to compute these extraction 

performance measures for PAE approaches without analytic solutions 

(as is the case with the ambient spectrum estimation based PAE 

approaches). Finally, objective and subjective evaluations are performed 

to validate the performance of these PAE approaches. 

III. Employing time-shifting techniques for PAE with partially correlated 

primary components. Practical signals are usually more complex than 

what is assumed in the basic signal model for PAE. One common case is 

the primary-complex case that considers the primary components to be 

partially correlated. Using conventional PAE approaches for these 

complex signals degrades PAE performance, as a function of primary 

correlation. Time-shifting techniques can be employed to increase the 

primary correlation to its maximum. Thus, the input signal is closest to 

the basic signal model, and conventional PAE approaches can be 

re-used. A corresponding output mapping can be employed to avoid the 

frame boundary switching artifacts due to time-shifting. Advantages of 

the proposed time-shifting based PAE approaches over conventional 

PAE approaches include lower extraction error and closer spatial cues, 

as shown in the experiments using synthetic signals and real recordings. 

IV. Adaptation of conventional PAE approaches to deal with primary 

components with multiple sources. Though one dominant source in the 

primary components is found to be quite common in PAE, it is still 
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possible to encounter the cases with multiple dominant (usually up to 

three) sources in some movies and games. Failing to consider this case 

will degrade the overall performance of the spatial audio rendering 

[ThH12]. To handle such cases, we investigate two ways to adapt the 

PAE approaches. The first technique considers subband decomposition 

of the full-band input signal before performing PAE on each subband 

signal. The partitioning of the frequency bins into subbands is found to 

be critical, where the adaptive top-down partitioning method 

outperforms other methods. The other way is the multi-shift technique 

that involves multiple instances of time-shifting, performing extraction 

for each shifted signals, and combining the extracted components from 

all shifting versions. The weighting method based on inter-channel 

cross-correlation is found to yield the best performance.  

V. Applying PAE in natural sound rendering headphone systems. The 

application of PAE in headphone based spatial audio reproduction is 

discussed. Based on the comparative analysis of the differences between 

conventional headphone listening and natural listening, an important 

concept of natural sound rendering is proposed. Five types of signal 

processing techniques including PAE based sound scene decomposition 

are discussed to achieve natural sound rendering. We addressed the 

problem of integration of these signal processing techniques, which is 

explained using an exemplar 3D audio headphone system. Subjective 

listening tests were conducted to validate the improved performance 

brought by natural sound rendering. 
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1.4 Organization 

This thesis is organized into eight chapters. Chapter 1 introduces the 

background, motivation, objective, and major contributions of this thesis work. 

Chapter 2 reviews the basics of spatial hearing. Based on the three types of 

audio representations, various spatial audio reproduction systems are discussed. 

Lastly, prior works on PAE are reviewed. In chapter 3, the widely used stereo 

signal model and the linear estimation framework for PAE are discussed. 

In-depth analysis on the extraction error leads to different objectives in PAE, 

and five linear estimation based PAE approaches are proposed and evaluated 

thoroughly. Based on the study in Chapter 3, we observed limited performance 

of these linear estimation based PAE approaches, especially when ambient 

power is relatively strong. Such a problem leads us to a new ambient spectrum 

estimation framework for PAE in Chapter 4, where the solutions can be 

obtained by exploiting the sparsity of the primary components. Simulations and 

subjective listening tests are conducted to validate the performance of these 

PAE approaches. Chapter 5 and Chapter 6 focus PAE in dealing with complex 

signals that are encountered in practice. In Chapter 5, we examine primary 

components with partial correlation at zero lag (i.e., primary-complex case). 

The performance of the conventional PAE approaches is investigated in the 

primary-complex case, leading to the proposed time-shifting technique. 

Following the study in Chapter 5, Chapter 6 proposes techniques based on 

subband decomposition and multi-shift techniques to handle complex primary 

components with multiple dominant sources. In Chapter 7, we discuss how 

PAE can be applied in spatial audio reproduction using headphones. An 

important concept of natural sound rendering is proposed, which integrates five 
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types of signal processing techniques, including sound scene decomposition 

using PAE. One example that implements the natural sound rendering concept, 

known as 3D audio headphones, is used for subjective evaluations. Finally, 

Chapter 8 concludes this thesis and points out some meaningful directions for 

future work. 

Figure 1.2 shows how these chapters are linked to the major contributions 

and the related publications of the author. Given channel-based audio as the 

input (source), PAE is applied to achieve an immersive spatial audio 
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Figure 1.2 The overview and organization of this thesis. The circles denote 

that these approaches can be directly combined. 
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reproduction for any arbitrary playback systems (medium). The major 

contributions of this thesis lie in the development of a more robust PAE 

approach with enhanced performance, as illustrated in the lower part of Fig. 1.2. 

On the vertical axis, starting from the basic approaches (linear estimation, 

Chapter 3), we observe how the performance of PAE can be improved by 

exploiting more characteristics (ambient spectrum estimation, Chapter 4). On 

the horizontal axis, we improve the robustness of PAE in handling more 

complex cases, using time-shifting techniques (Chapter 5), and 

multi-shift/subband techniques (Chapter 6). The true advantage of these 

robustness enhancement techniques is that they can be inherently applied to any 

PAE approaches that were originally proposed for signals under the basic signal 

model. Thus, a complete network of PAE approaches can be established. 

Furthermore, an example of spatial audio reproduction systems that incorporate 

PAE is discussed in Chapter 7. Table 1.1 lists the related information of the 

publications for each chapter of this thesis. 

  

Table 1.1 Chapters of this thesis and authors’ related publications
1
 

Chapter Author’s Publications Published in 

3 [J1] TASLP, 2014 

4 
[J3] SPL, 2015 

[J4] TASLP, 2015 

5 
[C1] ICASSP, 2013 

[J5] TASLP, 2015 

6 
[C2] ICASSP, 2014 

[C5] ICASSP, 2015 

7 

[J2] SPM, 2015 

[C4] 

[C8] 

ICASSP, 2015 

ICASSP, 2016 

 

1 
Refer to page 203 for the detailed information of the author’s publications. 
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Chapter 2 

Literature Review on Spatial Audio 

 

Spatial audio, also known as three dimensional (3D) audio, refers to the 

perception of sound in 3D space and anything that is related to such a 

perception, including sound acquisition, production, mastering, processing, 

reproduction, and evaluation of the sound. This thesis describes the 

reproduction of 3D sound based on the formats of the audio content. For this 

purpose, we first review the fundamental principles of human’s spatial hearing, 

and discuss various conventional, as well as advanced techniques for spatial 

audio reproduction. After that, a summary of the prior work on primary ambient 

extraction is presented. 

 

2.1 Basics of spatial hearing 

With the ears positioned on both sides of our head, humans are capable to 

perceive sound around us. The perceived sound can be processed by our brain 

to interpret the meaning of the sound. Equally amazing is our ability to localize 

sound in the 3D space. This capability of localizing sound in 3D space is often 

referred to as spatial hearing. In this section, we will review the fundamentals of 

spatial hearing. 
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2.1.1 How do we hear sound 

From a physical point of view, sound waves, emanating from a vibration 

process (a.k.a., sound source), travel through the air all the way into our ears. 

Human ears can be broadly separated into three parts: the outer ear, middle ear, 

and inner ear, as shown in Fig. 2.1 [WHO06]. The pinna of the outer ear picks 

up the sound and passes through the ear canal to the eardrum of the middle ear. 

The sound vibrations captured by the eardrum, are transformed into nerve 

signals by the cochlea. These nerve signals travel through the auditory nerve 

and reach our brain. Our brain can then interpret the sound we hear. Impairment 

to any parts of the ear would affect our hearing. 

2.1.2 How do we localize sound 

For a particular sound source in a 3D space, localization of this sound 

source would involve three dimensions. Clearly, take the listener (more 

specifically, the head of the listener) as the center of the space, a polar 

 

Figure 2.1 Structure of the human ear (extracted from [WHO06]) 
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coordinate system is considered to be more appropriate to describe the 3D space. 

Hence, we describe the three dimensions as distance, azimuth, and elevation, as 

shown in Fig. 2.2. Distance is the length of the direct line path between the 

sound source and the center of the head. Horizontal plane refers to the plane 

that is horizontal to the ground at ear-level height. Median plane is a vertical 

plane that is perpendicular to the horizontal plane with the same origin at the 

center of the head. Azimuth θ refers to the angle between the median plane and 

the vector from center of the head to the source position. Azimuth is usually 

defined in clockwise direction, with 0° azimuth refers to the direction right in 

front of us. Elevation ø is defined as the angle between the horizontal plane and 

the vector from center of the head to the source position. An elevation of 0° 

refers to a sound directly in front, and increasing elevation will first move the 

sound up, then behind, and finally under the listener. 

In spatial hearing, sound localization can be considered in different 

perspectives. In terms of the position of the sound source, we usually consider 

the direction (i.e., azimuth and elevation) and distance of the sound. Perception 

of single sound source is different from multiple sound sources, where 

incoherent sound sources are perceived as separate auditory events and coherent 

sound sources are governed by summing localization (usually for sound sources 

with time difference under 1ms) or precedent effect (for time difference above 

1ms, e.g., reflections) [Bla97]. Coherent sound sources that arrive after several 

milliseconds would be perceived as echo, which is quite common for sound in 

enclosed space. For sound localization task, human brains combine various cues 

from perceived sound and other sensory information such as visual images. It 
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has been commonly known that the following cues contribute to sound 

localization [Bla97], [Beg00], [AlD11], [Xie13]: 

1). Interaural time difference (ITD) 

2). Interaural level difference (ILD) 

3). Spectral cues (monaural, relevant to the anthropometry of the listener) 

4). Head movement cues (a.k.a., dynamic cues) 

5). Intensity, loudness cues 

6). Familiarity to sound source 

7). Direct to reverberation ratio (DRR) 

8). Visual and other non-auditory cues 

Among the seven auditory cues 1) to 7), the first four contribute to direction 

localization, whereas the last three affect distance perception. 

 

 

Figure 2.2 The coordinate system for sound localization  
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2.1.3 Direction perception: azimuth and elevation 

A variety of psychoacoustic experiments have demonstrated human’s ability 

to localize the direction of the sound source. The minimum audible angle 

(MAA) can reach as low as 1°-3° for broadband sound (e.g., white noise) in the 

front horizontal plane (±90° azimuth), though it becomes worse for other 

directions and narrowband sound [Bla97]. The ITD and ILD are the two most 

important cues for azimuth direction localization. The ITD refers to the 

difference of time that the sound travels from the source to the left and right 

ears. Apparently, sound from different directions would have different traveling 

time durations to the two ears, resulting different ITDs. The ILD is mainly 

caused by the attenuation of the sound levels in the contralateral ear (further to 

the source) due to the head shadowing effect, compared to the ipsilateral ear 

(nearer to the source). According to the duplex theory [Ray07], ITD relates to 

the ability of human auditory system to detect interaural phase differences at 

low frequency and hence ITD is more dominant in low frequency, whereas ILD 

dominants at high frequency region. The cutoff frequency is determined by the 

distance between the two ears (typically 22-23cm), which is usually considered 

to be around 1,500 Hz. 

For localization of sound in different elevations, ITD and ILD are not 

enough. This is because identical ITD and ILD values can be obtained from the 

sound source in a conical surface, as shown in Fig. 2.3 [Beg00]. This is the 

so-called “cone of confusion” phenomenon [Mil72]. One of the most common 

perceptual errors in cone of confusions is the front-back confusions, where one 

perceives a front (or back) sound in the back (or front). In order to perceive the 

elevation directions correctly, spectral cues are required. Spectral cues are 
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mainly caused by head, torso, and pinna that filter the incoming sound waves. 

Sound from different elevations would reach different parts of our body 

(especially the pinna), and undergoes different reflections before entering the 

ear canal. Most of the spectral cues due to pinna occur at frequencies above 3 

kHz, and the spectral cues due to head and torso appear in lower frequencies. It 

is worth mentioning that the spectral cues vary greatly from person to person 

due to the idiosyncratic anthropometry of the listener. In addition to the static 

cues mentioned above, dynamic cues due to head movement are extremely 

useful in resolving localization errors, especially front-back confusions. 

The Head-related transfer function (HRTF) is usually introduced to describe 

the change on the sound spectra due to the interactions of the sound wave with 

the listener’s head, torso, and pinna, which is defined as follows. In a free field 

environment, take the Fourier transform of the sound pressure ( LSP or RSP ) at the 

eardrums of the two ears and the sound pressure ( 0SP ) at the center of the head 

with the listener absent. The HRTF is the ratio of these two Fourier 

representations. Since human has two ears, HRTF typically comes in pairs. 

 

Figure 2.3 Cone of confusion due to identical ITD and ILD 
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Clearly, HRTF is a function of frequency (f), direction ( ,  ), distance (r), and 

listener (lsn), and is expressed as 
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where LP , RP  and 0P  are sound pressures in the frequency domain. According 

to Algazi et al. [ADM01], [BrD98], [ADD02], HRTF can be approximated by a 

structural composite of pinna-less head and torso, and the pinna, which is 

mainly effective at modifying the source spectra at low and high frequencies, 

respectively. In the far field, HRTF is usually considered to be independent of 

 

Figure 2.4 HRIR and HRTF of the same subject (CIPIC HRTF database 

subject 003 [ADT01]) in different directions. 
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distance [Ken95a]. The time domain representation of HRTF is referred to as 

head-related impulse response (HRIR). 

In Figs 2.4, 2.5, and 2.6, the HRIR and HRTF of subjects from the CIPIC 

HRTF database are plotted [ADT01]. The HRIR and HRTF of the same subject 

at different directions are shown in Fig. 2.4. It is clear that the waveform and 

magnitude spectra shapes vary with the direction horizontally and vertically. In 

Fig. 2.5, we show the ITD and ILD (full-band) that are computed from the 

HRTFs of the same subject. It is clear that ITD and ILD exhibit a close-to-linear 

relationship with the azimuth, and the change across different elevations is 

minimal, especially at non-lateral azimuthal directions. The HRIR and HRTF of 

three different subjects are plotted in Fig. 2.6, which indicates that HRTF 

generally differs from individual to individual, especially the spectral notches in 

the high frequency range. The individual differences of HRTF among different 

subjects are indeed due to the anthropometric features of these subjects. 

 

Figure 2.5 ITD and ILD of the same subject (CIPIC HRTF database subject 

003 [ADT01]) in different directions. 
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2.1.4 Distance perception 

Perception of distance of sound sources is important in sound localization. 

In sound rendering, it is critical to recreate the perception of distance of the 

sources close to natural listening. However, the challenges in simulating 

accurate distance perception are numerous. Human beings’ ability to accurately 

estimate the distance of a sound source has long been known to be poorer 

compared to our ability to estimate directions, even in the physical listening 

space [Zah02]. The experiments conducted by Zahorik showed that the 

perceived distance can usually be expressed in a power function of the actual 

distance [Zah02a].  The direct-to-reverberation energy ratio is found to be the 

most critical cue for absolute distance perception, even though the intensity, 

loudness, and binaural cues (including ILD, and interaural coherence) can 

provide relative cues for distance perception [Zar02b], [Beg00]. However, 

 

Figure 2.6 HRIR and HRTF (left ear, azimuth = 0°, elevation = 0°) of three 

different subjects (subjects 003, 008, 009 in the CIPIC HRTF database 

[ADT01]). 

 

0 50 100 150 200
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Sample

A
m

p
lit

u
d
e
 (

s
h
if
te

d
)

(a) HRIR left ear

 

 

subject 003

subject 008

subject 009

10
2

10
3

10
4

10
5

-25

-20

-15

-10

-5

0

5

10
(b) HRTF left ear

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B

)



22 

 

accurate simulation of distance perception is challenging since reverberation 

depends on the room characteristics. The correct amount of reverberation to be 

added to simulate distance perception in a particular room can be obtained only 

by carrying out acoustical measurements. 

2.1.5 Sound in rooms: reflections and reverberation 

Though sound localization is discussed in free-field environment, the 

real-life sound environment is never free-field. The existing free-field 

environment can only be found in an anechoic chamber. Rooms that we live in 

everyday are filled with reflections and reverberation, usually characterized by 

the room impulse response (RIR). A schematic illustration of RIR is shown in 

Fig. 2.7. A typical RIR consists of three parts: the direct path, early reflections, 

and late reverberation (after 80ms). An important aspect of room acoustics is 

the reverberation time RT60, which is defined by the time that it takes for the 

sound to attenuate by 60 dB once the sound source ceases. To simulate the 

perception of sound in rooms (or sound environment in general), RIRs that are 

 

Figure 2.7 A schematic illustration of RIR (adopted from [VPS12]) 
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derived or measured from the (approximately) geometrically identical room are 

usually used to add artificial reverberation to the dry sound sources [VPS12]. 

2.1.6 Psychoacoustics and critical band 

Sound is meaningful when it is perceived by humans. Changes in the 

physical part of the sound (including frequency, intensity, phase, direction, etc.) 

may not always excite perceptual difference. This is mainly due to the 

limitation of human auditory system. Thus, in additional to objective evaluation, 

psychoacoustic experiments, which are in the form of subjective listening tests, 

are conducted to evaluate the performance of a sound reproduction system. The 

psychoacoustic experiments could help us better understand how the system 

actually performs in practice. The psychoacoustic experiments usually include 

localization of the sound sources, quality of the synthesized sound, quality of 

the reproduction system (e.g., loudspeakers and headphones), quality of the 

rendering methods, and so on. 

One of the most important aspects of psychoacoustics is auditory masking, 

where a louder sound masks (fully or partially) a weaker sound when their 

spectra are close. Auditory masking happens in frequency domain (spectral 

masking) and time domain (temporal masking). The range of the spectra for 

spectral masking is defined based on its critical band, as per psychoacoustic 

experiments. According to Zwicker [Zwi61], 24 bands known as the Bark scale 

are defined to cover the frequency range of human listening. Each critical band 

has a center frequency with an approximate 1/3 octave bandwidth. The 

conversion from frequency (f in kHz) into the Bark can be described as: 

 
   

2
13arctan 0.76 3.5arctan / 7.5 .Bark f f  

   (2.2) 
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Another example of critical band is the equivalent rectangular bandwidth (ERB) 

[Moo98], which is described as: 

 
 24.7 4.37 1 .ERB f 

 (2.3) 

It is widely believed that the human auditory system is performing the critical 

band analysis of the incoming sound, in tasks like localization and separation of 

sound [Fle40], [Bre90]. Therefore, many audio processing systems are derived 

based on the concept of critical band (or its equivalents). For example, in 

binaural cue coding (BCC), 20 non-uniform filterbank based on ERB is 

employed [FaB03]. Furthermore, MPEG Surround employs a hybrid quadrature 

mirror filter (QMF) filterbanks [SBP04], [HPB05] that matches the frequency 

resolution of the human auditory system. 

2.2 Spatial audio reproduction 

Most of the time, we are not listening to real sound in a real environment, 

but are listening to a reproduced sound playback from a sound reproduction 

system. The reproduced sound is often referred to as virtual sound, as compared 

to real sound in natural listening. 

2.2.1 A brief history of sound reproduction systems 

Ever since the invention of phonograph by Edison in 1887, sound has been 

an essential part of telecommunication and media. The first stereo loudspeaker 

system was introduced by Blumlein [Blu31] in 1931, which has since then 

become the most popular sound reproduction system in homes. It takes humans 

some forty years to come up with new sound systems, including the first Dolby 
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surround sound [ITU12] and Ambisonics invented by Gerzon [Ger73]. Though 

invented at almost the same time, these two systems undergo extremely 

different paths. The surround sound reproduction system, including 5.1, 7.1, as 

pushed by the film and music industry, has become the most prevalent home 

theater systems. The 5.1 surround sound system requires five speakers placed at 

center (0° azimuth), front left (-30° azimuth), front right (30° azimuth), 

surround left (-110° azimuth), surround right (110° azimuth), as well as a 

subwoofer. 7.1 surround sound system extends 2 surround speakers in 5.1 to 4 

speakers. The multichannel surround sound system keeps evolving, from one 

layer to two layers (such as 9.1, 10.2) to even more layers (such as 22.2 

[HMS11], Auro 3D). On the other hand, Ambisonics, despite its mathematical 

beauty (based on Huygens principle), was not well adopted in commercial 

systems. Nevertheless, the research on Ambisonics was never stopped in 

academia and it retrieves popularity in recent years, as shown in new MPEG-H 

standard [HHK14]. In 1993, another sound reproduction technique: wave field 

synthesis (WFS) was introduced [Ber88], [BVV93] and has found it presence in 

commercial products since 2001. Besides the development of loudspeaker 

systems, headphones are getting more and more widely used in recent years, 

which is mainly due to the rapid increase in mobile devices. The HRTFs are 

widely used in headphone based 3D sound reproduction [Beg00], [AlD11], 

[KHT15]. Today, we see a variety of sound reproduction systems in various 

applications, from cinema, home theater, to on the go. More and more 3D 

sound reproduction techniques have been studied and implemented in 

commercial products. 
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2.2.2 Representations of audio content 

With the development of different recording and mixing techniques, 

different types of audio content representations have emerged in commercial 

market. Three main types are: channel-based, object-based, and 

transform-domain based. 

Channel-based format has been the most common way of audio content 

representation. The channel-based format is playback-oriented as the channel 

signals can be directly fed to the loudspeakers based on the standard 

configuration (i.e., prescribed positions). Usually no additional processing (or 

very little processing like volume control) is required. This is because the 

channel-based format is usually the outcome of the sound mixing process 

(performed by the sound engineer). Besides the easy applicability for the 

playback, the channel-based format is also rather efficient at transmission and 

storage. The down side of channel-based format lies in its requirement to have a 

fixed playback system that corresponds to the number of channels. For example, 

stereo audio content requires the two speakers to be placed symmetrically at 

±30 degrees azimuth on the two sides of the listener. 5.1 channel further adds a 

center and two rear channels, placed at 0 degree, and ±110 degrees azimuth, 

respectively, together with a subwoofer (low frequency effect channel). A 

matrix system that enables the downward compatibility of 5.1 is discussed in 

[ITU12]. Other channel-based formats include 7.1, 9.1, 10.2, and all the way up 

to 22.2 in three vertical layers. Adding height channels in channel-based audio 

is a fundamental improvement over horizontal loudspeaker setup to make the 

sound reproduction in full three dimensions. Commercial examples involving 
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height channels on top of the conventional surround sound formats include 

Dolby ATMOS [Dol13] and Auro 3D [Aur15]. 

Object-based format is the most original format of a sound recording. 

Object-based format represents a sound scene using a combination of sound 

objects with the associated metadata [HHK15]. Sound objects are essentially 

individual sound sources. The metadata usually consists of two types: static 

metadata such as language, on/off time, etc., and dynamic metadata, such as 

position or direction, level, width or diffuseness of the sound object. Not all 

audio objects are separated. Those objects that collectively contribute to a fix 

sound effect or sound environment shall be grouped and regarded as one “larger” 

audio object. As a result, metadata can be specified for each audio object or a 

group of objects. The greatest benefit of object-based audio is that it can be 

rendered optimally for any arbitrary playback systems. Meanwhile, interactivity 

can be enabled, for example, changing to another language of speech, 

increasing the loudness of certain objects (e.g., speech level shall be higher for 

hearing impaired listeners), and adapting the position of the sound objects 

according to listener’s movement in virtual reality applications, etc. The 

object-based format is the best format in terms of reproduction flexibility and 

quality. However, two challenges that are found in practical implementation are 

high storage or transmission bandwidth, and high computation complexity for 

real-time rendering [MMS11]. Important aspects on implementation of audio 

objects coding and rendering were extensively studied in [Pot06]. Some work 

has been carried out by MPEG to achieve an efficient coding of sound objects 

based on perceptual features [HPK12].  
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The other type of audio representation is known as the transform-domain 

based format (or scene based, Ambisonics) [SWR13]. Transform-domain based 

format encodes the sound scene using orthogonal basis functions physically 

(using microphones) or digitally. In the reproduction, a corresponding rendering 

process is required. Though individual sound objects are not used, 

transform-domain based format can also achieve flexibility in reproduction for 

various playback setups, thanks to the sound field analysis and synthesis 

principle [Pol05]. However, the transform-domain representation is less 

common and less supported (e.g., recording/reproduction equipment) in 

industry than in academia. 

2.2.3 Spatial audio reproduction techniques 

These above-mentioned sound scene representations support different 

spatial audio reproduction techniques. Due to the nature of channel-based 

representations, conventional spatial audio reproduction techniques are 

straightforward as the audio signals of each channel are directly sent to drive 

the corresponding loudspeaker, resulting in stereo loudspeaker playback, 5.1, 

7.1 surround sound playback, and stereo headphone playback. The simplicity of 

channel-based reproduction is achieved at the cost of strict requirement of exact 

match of the playback configuration. When there is a mismatch between the 

audio content and actual playback configuration, the performance is degraded, 

though simple down-mixing and up-mixing approaches can be applied.   

In contrast to the channel-based format, the object-based and 

transform-domain based formats are more flexible in the playback and usually 

achieve better performance in spatial audio reproduction. Modern spatial audio 
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reproduction techniques can usually be divided into two classes, namely, the 

physical reconstruction and perceptual reconstruction [HWZ14].  

The first class of physical reconstruction aims at synthesizing the sound 

field in the listening area or point to be (approximately) equal to the desired 

sound field. Sound field synthesis is essentially based on the physical principle 

of synthesizing acoustic pressure using a weighted distribution of monopole 

sources [SWR13]. Two examples of sound field synthesis techniques are 

Ambisonics (4 channels) or high order Ambisonics (HOA, consists of more 

than 4 channels), and wave-field synthesis. Ambisonics or HOA decomposes 

(or encodes) a sound field using spherical harmonics, which results in the 

transform-domain based representation. With more channels, HOA can improve 

the spatial quality of reproduced sound field over Ambisonics. The best 

listening area in Ambisonics is usually limited to the central area of the sphere. 

In contrast, WFS can extend the sweet spot to a much wider area by 

approximating the propagation of the primary source using an array of 

secondary sources (loudspeakers). The loudspeaker driving signals are derived 

using a synthesis system function and source signals, which are expressed in 

object-based format. Compared to Ambisonics, WFS is not only well studied in 

academia, but also employed in some commercial sound systems such as 

IOSONO [Ios15] and Sonic Emotion [SoE15]. A major challenge in the 

physical reconstruction techniques is the requirement of large amount of 

loudspeakers and high computational complexity (especially in real-time 

rendering scenarios) [SWR13]. 

The other type of spatial audio reproduction techniques is based on the 

perceptual characteristics of human auditory system that our listening is not 
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very sensitive. A good spatial audio reproduction is one that sounds good. The 

key idea of perceptual based spatial audio reproduction techniques is to have 

the sound captured by the listener’s eardrum to be perceptually close to the 

desired sound field. While the reproduced sound field does not always well 

match the desired sound field, perceptual based spatial audio reproduction 

techniques can greatly simplify the reproduction method. The simplest example 

of this category is the amplitude panning techniques, which are widely 

employed in sound mixing for stereo and surround sound [Hol08]. Techniques 

that extend amplitude panning to 3D space include the vector base amplitude 

panning [Pul97], [PuK08] and variants like distance based amplitude panning 

[LBH09]. Amplitude panning techniques are based on the ILD cues to recreate 

the correct direction of the sound sources. Similarly, time delay techniques that 

vary the ITD can also be used for spatial audio reproduction [SWR13]. 

However, the amplitude panning and time delay techniques are usually too 

simple to reproduce the correct impression of the sound sources with increased 

source width [MWC99], degraded location performance [ThP77], and 

coloration [PKV99]. A better approach is to consider the complete localization 

cues, which are included in the HRTFs [Beg00]. This approach is usually 

applied in headphone playback and it is known as binaural rendering. The key 

idea in binaural rendering is to consider the sound source propagation process 

(from sound source to listener’s eardrum) as a linear-time-invariant system and 

express this alteration of the source spectra due to human body as a filter. 

Therefore, the perception of any source from any direction can be recreated by 

convolving the sound source with the corresponding filters to obtain the driving 

signals that are sent to a compensated headphone (assumed transparent). The 
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same concept of binaural rendering can also be applied in stereo loudspeakers, 

which is known as transaural rendering [Gar97]. Compared to binaural 

rendering, transaural rendering requires one additional process known as 

crosstalk cancellation. Multichannel extension of crosstalk cancellation and 

transaural system are discussed in [Gar00]. Crosstalk cancellation techniques 

are very sensitive of listener movement and small changes in sound 

environment, which limits the practical use of transaural systems. In contrast, 

binaural rendering over headphones are much more widely used. However, 

there remain two major challenges. The first one lies in the large variations of 

the HRTFs among different individuals. Use of non-individualized HRTF will 

degrade the localization accuracy. The other problem is the headphone itself, 

which is hardly completely transparent and headphone effect compensation 

varies not only from person to person, but also even after re-positioning. Due to 

the advent of virtual/augmented reality applications, many studies on HRTF 

individualization and headphone compensation are currently being carried out. 

2.2.4 Spatial audio processing 

In order to achieve the goal of efficient, flexible and immersive spatial 

audio reproduction, different spatial audio signal processing techniques are 

introduced. The aim of spatial audio processing (or coding) techniques is to 

complement the discrepancies in the above-mentioned spatial audio 

reproduction techniques, with a focus on channel-based signals and 

conventional multichannel reproduction techniques. Generally, these techniques 

are based on the concept of parametric spatial audio processing [KTT15] and 

exploit the perceptual characteristics of human auditory systems [Bla97]. In this 
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part, we focus on five most widely studies frameworks, though other variations 

could also been found in the literature. Among the five frameworks discussed 

below, two of them deal with channel-based signals, one on the object-based 

signals, another one on the transform-domain based signals, and the latest one 

consolidates all three types of signals.  

For channel-based signals, the objective of spatial audio processing is to 

achieve a more efficient representation that can reproduce perceptually 

plausible sound scenes. The most widely known framework comes from the 

MPEG audio group, known as MPEG Surround [HKB08], [BrF07], [HiD09]. In 

MPEG Surround, the multichannel signals go through a spatial analysis process 

and is represented using a down-mixed version together with the spatial 

parameters, as shown in Fig. 2.8. In the spatial synthesis, the original 

multichannel can be reconstructed using the spatial parameters in a way that the 

spatial perception is maximally preserved. Furthermore, other types of 

synthesized output include the direct down-mix for the playback with reduced 

number of loudspeakers and binaural signals for headphone playback [BrF07], 

 

Figure 2.8 Basic concept of MPEG Surround (adapted from [HiD09]) 
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[FaB03]. The details on the coding of the spatial parameters can be found in 

binaural cue coding (BCC) framework [FaB03], [BaF03]. 

Another framework that is also targeting channel-based audio is the 

so-called spatial audio scene coding (SASC) framework developed by Jot et al. 

[GoJ08], [JMG07]. [GoJ07a], [GoJ06a], [GoJ06b], [GoJ07c]. Compared to 

MPEG Surround, SASC was designed to address the pressing need to enhance 

sound reproduction over arbitrary playback configurations in loudspeakers and 

headphones. The detailed block diagram is shown in Fig. 2.9. In SASC, a sound 

scene is considered as a sum of primary and ambient components. Therefore, 

primary ambient extraction (or decomposition) is applied first, followed by the 

spatial analysis carried out independently for the primary and ambient 

components to obtain the spatial cues (i.e., localization information). In the 

spatial synthesis, the output is reconstructed using the primary and ambient 

components as well as the spatial cues. By taking into account the actual 

playback format, the reconstruction is able to fit any playback configuration. 

Due to this advantage of SASC, the primary ambient extraction work described 

in this thesis is essentially based on SASC. Details on the primary ambient 

extraction will be discussed throughout this thesis. 

 

Figure 2.9 Block diagram of Spatial Audio Scene Coding (SASC) (adapted 

from [GoJ08]) 
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For object-based audio signals, MPEG introduced MPEG Spatial Audio 

Object Coding (SAOC) framework in 2012 [HPK12]. Similar to MPEG 

Surround, the MPEG SAOC aims to achieve an efficient representation of the 

object-based audio using a parametric approach that takes a down-mix of the 

audio objects in subband with supplementary inter-object information, as shown 

in Fig. 2.10. In the synthesis, the object decoder can be employed first before 

the render or can be combined into one block. Based on the information of the 

actual playback information, a rendering matrix is used to transform the audio 

 

Figure 2.10 Basic concept of Spatial Audio Objects Coding (SAOC) 

(adapted from [HPK12]) 

 

Figure 2.11 Block diagram of Directional Audio Coding (DirAC) (adapted 

from [Pul07]) 
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objects into channel signals for playback. It shall be noted that SAOC can also 

achieve the flexibility and interactivity of the object-based format. 

For transform-based signals, a parametric spatial audio processing 

framework known as Directional Audio Coding (DirAC) was introduced by 

Pulkki et al. [Pul07]. As shown in Fig. 2.11, DirAC analyzes the direction and 

diffuseness information of the microphone signals (in B-format) and then 

decomposes the microphone signals into two streams, namely, diffuse streams 

and non-diffuse streams. As shown in Fig. 2.11, these two streams go through 

different rendering process, where the non-diffuse streams is processing using 

VBAP with the loudspeaker setup information provided, and diffuse streams 

are decorrelated and played back over all the channels. The advantage of such 

decomposition, similar to SASC, is to be able to achieve flexible reproduction 

over arbitrary playback configurations. 

 

Figure 2.12 Overview of MPEG-H 3D audio coding (adapted from 

[HHK14]) 
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Finally, MPEG-H [HHK14], [HHK15], introduced in 2014, aims to handle 

all three types of audio content (channel-based, object-based, and 

transform-domain based, presenting a complete solution for universal spatial 

audio reproduction. An overview of MPEG-H framework is depicted in Fig. 

2.12. In the first step, the input bit stream is converted to their respective format 

using Unified Speech and Audio Coding (USAC)-3D core decoder. Next, 

different content types go through corresponding processing before they were 

mixed into channel signals that match the actual playback system layout. 

Finally, in the case of headphone playback, a binaural rendering of loudspeaker 

signals based on binaural room impulse response (BRIR) is employed. With 

such a unified framework, MPEG-H 3D audio can be employed for any content  

type, any playback configuration, while achieving the highest spatial audio 

quality. 

2.2.5 Spatial audio evaluation 

In spatial audio reproduction, the quality of the reproduced sound scene is 

usually evaluated on human perception. Perceptual evaluation of audio quality 

is often achieved using subjective listening tests [BeZ07]. Unlike conventional 

sound quality evaluation that usually only considers the timbre quality [GaS79] 

(e.g., evaluation of the quality of audio codec [ITU03]), the spatial quality is 

equally important in spatial audio evaluation [Rum02]. Referring to these two 

aspects of audio quality for spatial audio evaluation, Table 2.1 below 

summaries the various attributes that can be considered in each category 

[SWR13]. Among the timbre attributes, timbre fidelity, coloration, and 

distortion are more widely used. For spatial attributes, spatial fidelity, 
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envelopment, distance, and localization are more important. Relative 

importance between the spatial quality and timbre quality is investigated in 

[RZK05], and it was summarized that the overall sound quality can be 

explained by the sum of 70% of the timbre quality and 30% of the spatial 

quality. Beyond these “perceptive domain” attributes as listed in Table 2.1, the 

highest level of perception is in the “affective domain” [BeZ07], where the 

listeners indicate their preference of the perceived sound scenes. In spatial 

audio reproduction where virtual audio is presented to the listener, an 

importance affective feature is the immersiveness. In other words, while 

listening to the reproduced sound, how much the listener feels as if him/her-self 

Table 2.1 Attributes used for perceptual spatial audio evaluation (adapted 

from [SWR13]) 

Category Attribute Description 

Timbre 

Timbral fidelity 
Degree to which timbral attributes agree with 

reference 

coloration 
Timbre-change considered as degradation of 

auditory event 

Timbre, color of tone Timbre of auditory events 

Volume, richness Perceived thickness 

Brightness Perceived brightness or darkness 

Clarity Absence of distortion, clean sound 

Distortion, artifacts Noise or other disturbances in auditory event 

Spatial 

Spatial fidelity 
Degree to which spatial attributes agree with the 

reference 

Spaciousness Perceived size of environment 

Width Individual or apparent source width 

Ensemble width Width of the set of sources present in the scene 

Envelopment 
Degree to which the auditory scene is enveloping 

the listener 

Distance 
Sense of perspective in the auditory scene as a 

whole 

Externalization 
Degree to which the auditory event is localized in- 

or outside of the head 

Localization 
Measure of how well a spatial location can be 

attributed to an auditory event 

Robustness 
Degree to which the position of an auditory event 

changes with listener movements 

Stability 
Degree to which the location of an auditory event 

changes over time 
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is inside the virtual scene (a.k.a., being there). Pursuing an immersive 

reproduction is the common aim of all spatial audio reproduction systems 

including the primary ambient extraction based spatial audio reproduction. 

 

2.2.6 Summary and comparison of spatial audio reproduction  

Table 2.2 summarizes the advantages, disadvantages and the status of the 

three audio formats discussed in this section. Furthermore, the spatial audio 

reproduction systems that correspond to each audio format are listed, together 

with the possible spatial audio processing techniques. It shall be noted that 

though classified in Table 2.2, there are still exceptions that link one audio 

format with other reproduction systems or processing techniques. For example, 

channel-based signals can also be employed in binaural/transaural rendering by 

considering one channel as one audio object with a fixed position. Ambisonics 

reproduction can also be extended to object-based audio by encoding the sound 

objects using spherical harmonics. It could be foreseen that with the 

advancement of semiconductor industry, the efficiency problem in object-based 

audio could be greatly alleviated and object-based audio will overtake 

channel-based to become the most commonly used audio format. Thus, 

advanced spatial audio reproduction system can essentially be employed in 

homes and mobile platforms. Nevertheless, there is still a need to ensure the 

compatible playback of channel-based audio signals due to the large amount of 

content available today. 
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2.3 Prior work in primary ambient extraction 

In this section, we will summarize various existing works on PAE and 

highlight how our works differ from those in the literature.  

As discussed above, PAE is an integral part of spatial audio scene coding 

framework that considers the audio scene as a sum of the primary components 

and ambient components. The primary components are usually composed of 

directional point-like sources, whereas the ambient components are diffuse 

sound determined by the sound environment. The target audio format of PAE is 

channel-based signals. Therefore, we classify the PAE approaches based on the 

number of channels in the input signals: single channel (or mono), stereo, and 

Table 2.2 A summary of the characteristics of three audio content formats 

and their relationships with the spatial audio reproduction systems and 

processing techniques 

Audio content 

format 
Channel-based Object-based 

Transform-domain 

based 

Advantages 

Easy to set up; no 

processing for the 

matched playback 

configurations 

Flexible for 

arbitrary playback 

configuration; 

accurate sound 

image; 

enable interactivity 

Flexible for arbitrary 

playback configuration; 

full 3D sound image 

Disadvantages 

Difficult to fit in 

different playback 

configurations; 3D 

sound image limited 

High transmission 

or storage; high 

computation 

complexity 

Require a large number 

of speakers placed on 

the surface of a sphere 

Status 
Legacy audio format, 

still dominant 

Emerging audio 

format; gaining 

popularity 

Not well adopted 

commercially 

Desired 

reproduction 

system 

Stereo and 

multichannel 

surround sound 

system 

Amplitude panning, 

WFS, binaural, 

transaural rendering 

Ambisonics, and HOA 

Typical spatial 

audio 

processing 

MPEG Surround 

[HiD09], SASC 

[GoJ08] 

SAOC [HPK12] DirAC [Pul07] 

 



40 

 

multichannel. From another perspective, the complexity of the audio scenes 

affects the performance of PAE greatly. Based on the existing PAE work, the 

complexity of audio scenes can generally be classified into three levels, namely, 

basic, medium, and complex. The basic complexity level refers to the audio 

scene where there is usually one dominant source in the primary components, 

with its direction created using only amplitude panning techniques. More 

specific conditions for the basic level will be detailed in Chapter 3. The medium 

complexity level requires only the condition of one dominant sources, without 

restricting how its direction (using amplitude panning, delay, or HRTF, etc.) 

can be created. In the complex audio scene level, we consider multiple 

dominant sources in the primary components. The number of dominant sources 

in this case is also usually limited to 2-3 since it is impractical for listeners to 

concentrate on too many sources at one time and listeners would rather consider 

those sources as ambient components. Note that those PAE approaches that 

claimed to work in multiple sources using subband techniques, but without 

detailed study, will not be classified in the complex level category. From these 

two perspectives, we shall classify the existing PAE approaches into different 

categories, as summarized in Table 2.3.  

With a glance of this table, it is observed that most of the PAE works are 

mainly focused on the stereo signals, due to the large amount of stereo content. 

There are some works carried out for multichannel signals, whereas very 

limited works are on single channel signals. This makes sense because dealing 

multichannel signals is much less challenging than dealing with single channel 

signals, where there is very limited information (especially the inter-channel 

relations). Next, we will summary the PAE work in each category. 



41 

 

 2.3.1 Stereo signals 

PAE for stereo signals in the basic complexity category can be classified 

into four types: (i) time frequency masking, (ii) principal component analysis, 

Table 2.3 An overview of recent work in PAE 

No. of 

channels 

Complexity of audio scenes 

Basic 

(single source, only amplitude 

panning) 

Medium 

(single source) 

Complex 

(multiple 

sources) 

Stereo 

Time frequency masking: 
[AvJ02], [AvJ04], [MGJ07], [Pul07] 

 

PCA: 
[IrA02], [BVM06], [MGJ07],  

[GoJ07b], [BaS07], [God08], 

[JHS10], [BJP12], [TaG12], 

[TGC12], [LBP14], [HTG14] 

 

Least-squares: [Fal06], [Fal07], 

[JPL10], [FaB11], [HTG14], 

[UhH15] 

 

Ambient spectrum estimation: 

[HGT15a], [HGT15b] 

 

Others: [BrS08], [MeF10], [Har11] 

LMS: [UsB07] 

 

Shifted PCA: 
[HTG13] 

 

Time-shifting: 
[HGT15c] 

PCA: 
[DHT12], 

[HGT14], 

[HeG15], 

Multichannel 

PCA:  
[GoJ07b] 

 

Others: 

 [GoJ07a], [WaF11], [TGC12], 

[CCK14] 

ICA and 

time-frequency 

masking: 

[SAM06] 

 

Pairwise 

correlations: 

[TSW12] 

 

Others: 

[StM15] 

ICA: 
[HKO04] 

Single 
NMF: [UWH07] 

Neural network: [UhP08] 

 

Notes:  

1. Those papers that does not explicitly study and evaluate complex 

signals will be classified into the basic or medium complexity categories. 

2. Blue color represents application papers, where no detailed study is 

carried out on PAE. 

3. Red color represents our works, which are described in the following 

chapters of this thesis. 
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(iii) least-squares, and (iv) ambient spectrum estimation, as well as some other 

techniques.  

One of the earliest works in primary or ambient extraction was from 

Avendano and Jot in 2002 [AvJ02]. In this work, a time-frequency masking 

approaches was proposed to extract ambient components ˆ
cA  from stereo 

signals
cX , as 

      ˆ , , , ,c c AA m l X m l m l 
 (2.4) 

where c denotes the channel index, and  0 , 1A m l    is the real-valued 

ambient mask at time-frequency bin  , .m l The time-frequency regions that 

present high coherence correspond to stronger primary components, and low 

coherence time-frequency regions can be attributed to stronger ambient 

components [AvJ04]. Thus, they derived the ambient mask using a nonlinear 

function of the inter-channel coherence. Following works on time-frequency 

masking derives the ambient mask based on the characteristic that ambient 

components have equal level in the two channels of the stereo signal [MGJ07] 

or using diffuseness measured from B-format microphone recordings [Pul07].  

Principal component analysis (PCA) has been the most widely studied PAE 

approach [IrA02], [BVM06], [MGJ07], [GoJ07b], [BaS07], [God08], [JHS10], 

[BJP12], [TaG12], [TGC12], [LBP14], [HTG14]. The key idea behind the PCA 

based PAE approach is to extract the principal component with the largest 

variance as the primary components (as the name suggests). Variants of PCA 

include the modified PCA that ensures uncorrelated ambience extraction 

[God08], enhanced post-scaling to restore the correct primary-to-ambient 

energy ratio [JHS10] and correct power of primary and ambient components 
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[BJP12]. In our work [HTG14], we derived a simplified solution for PCA and 

conducted a comprehensive objective evaluation of PCA, which leads us to the 

applications of PCA in PAE. 

Least-squares is another type of commonly used PAE approaches [Fal06], 

[Fal07], [JPL10], [FaB11], [HTG14], [UhH15]. Based on the basic stereo signal 

model, least-squares algorithm derives the estimated primary and ambient 

components by minimizing the mean-square-error (MSE) of the estimation of 

these components [Fal06]. Several variants of least-squares have been proposed 

and studied in our work [HTG14]. Combining PCA with least-squares, we 

proposed a unified linear estimation framework for PAE [HTG14], where 

details of liner estimation based PAE can be found in Chapter 3. Furthermore, 

other least-squares variants were introduced to improve the spatial quality of the 

extracted primary and ambient components [JPL10], [UhH15]. 

To solve the problem of removing uncorrelated (undesired) ambient 

components from the extraction output, a new framework based on ambient 

spectrum estimation was introduced recently [HGT15a], [HGT15b]. Details on 

the ambient spectrum estimation approaches can be found in Chapter 4 of this 

thesis. Other PAE approaches that fall into this category include [BrS08] that 

derives an out-of-phase signal as ambient components; [MeF10] that considers 

ambient components as the sum of a common component and an independent 

component; and [Har11] that classifies various signal models for respective 

extraction. 

In order to handle stereo signals that consist of primary components whose 

directions are created using time/phase differences (i.e., medium complexity), 

several works can be found in the literature. Usher and Benesty proposed an 



44 

 

adaptive approach using normalized least-mean-squares (NLMS) to extract 

reverberation from stereo microphone recordings [UsB07]. However, this 

adaptive approach cannot always yield a good performance in a short time. In 

contrast, our proposed shifted PCA [HTG13] and extended time-shifting 

technique [HGT15c] is much simpler in solving this problem. Details on this 

approach can be found in Chapter 5 of this thesis. 

With respect to stereo signals with multiple sources, there is less work 

reported in the literature of PAE. One prior work by Dong et al. applied PCA in 

polar coordinates to reduce the coding noise of stereo signals for multiple 

source case [DHT12]. However, the extraction performance was not studied. To 

fill in this gap, we conducted two works that studied PCA with different 

frequency partitioning methods in frequency domain [HGT14], and PCA with 

multiple time shifts in time domain [HeG15]. Details are described in Chapter 6 

of this thesis. 

2.3.2 Multichannel signals 

Besides the extensive study on PAE for stereo signals, PAE on multichannel 

signals is less well studied. PCA was originally proposed to work for 

multichannel signals with only one dominant amplitude-panned source in 

[GoJ07b]. There are several works [GoJ07a], [WaF11], [TGC12], [CCK14] that 

only briefly mention the idea for multichannel PAE without in-depth studies. 

For other multichannel signals with one dominant source, independent 

component analysis (ICA) can be combined with time-frequency masking to 

extract the dominant sources [Sam06]. Another approach that was extended 

from [AvJ04], achieves primary ambient extraction using a system of pairwise 
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correlation. Recently, Stefanakis introduced W-disjoint orthogonality (WDO) 

and PCA based foreground suppression techniques in multichannel microphone 

recordings [StM15]. In the case of multiple sources in multichannel signals, 

blind source separation techniques can be employed for the purpose of primary 

ambient extraction. When the number of dominant sources is equal to or less 

than the number of channels (as it is the case for PAE), ICA is a common 

technique [HKO04]. Compared to stereo signals, PAE with multichannel 

signals is in fact easier to solve since there are more information available. 

Moreover, PAE approaches based on stereo signals can be extended to 

multichannel signals. Some discussions on this topic can be found in [HeG15b]. 

2.3.3 Single channel signals 

In contrast to stereo and multichannel signals, PAE with single channel 

signals is quite challenging due to the limited amount of information available. 

A critical problem in the single channel case is that how primary and ambient 

components can be defined and characterized since there are no inter-channel 

cues. Nevertheless, two works from Uhle shed some light on solving such a 

problem. In [UWH07], it is considered that ambient components exhibit a less 

repetitive and constructive spectra structure than primary components. 

Therefore, when applying non-negative matrix factorization (NMF) on the 

single channel signal, primary components are better explained and factorized, 

and the residue can thus be considered as ambient components. However, the 

NMF method suffers from high computational complexity and latency. To 

avoid this problem, Uhle and Paul introduced a supervised learning approach 

for ambient extraction from single channel signals [UhP08], where a neural 
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network is trained to obtain an ambient spectra mask. Subjective listening tests 

in [UhP08] validated the improved perceptual quality of the up-mix systems 

employing these PAE approaches. 

 

2.4 Conclusions 

In this chapter, we reviewed the basics on spatial hearing of humans, where 

the binaural cues are very important. Various aspects on spatial audio 

reproduction are further discussed, which begins with the history of spatial 

audio reproduction. Three types of audio representations are explained and 

found to be deterministic in choosing the appropriate spatial audio reproduction 

techniques as well as spatial audio processing techniques. With the aim to 

improve the reproduction flexibility and quality of channel-based audio, 

primary ambient extraction is introduced. Various existing PAE approaches are 

classified and reviewed in this section. The details on our work to improve the 

performance of PAE in various circumstances as well as applying PAE in 

spatial audio reproduction will be presented in the following chapters. 
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Chapter 3 

Linear Estimation based Primary Ambient 

Extraction 

 

In this chapter
1
, we focus on primary ambient extraction approaches that 

can be considered in a unified linear estimation framework, with the assumption 

that the primary and ambient components are linearly mixed in the stereo signal 

model [GoJ07b]. Based on the linear estimation, PCA and least-squares (LS) 

are designed to minimize the correlation between the primary and ambient 

components and the extraction error, respectively. Our analysis reveals that the 

extraction error consists of three error components, namely, distortion, 

interference, and leakage. Distortion relates to the amount of amplitude scaling 

of the extracted primary (or ambient) component as compared to the true 

primary (or ambient) component. Interference measures the amount of 

uncorrelated primary (or ambient) component that is extracted from the stereo 

signal. Leakage measures the amount of undesired ambient (or primary) 

components in the extracted primary (or ambient) component. The 

characteristics of these three error components indicate that the leakage and 

distortion are perceptually more noticeable than interference in most of the 

applications. Taking this into consideration, different solutions for PAE can be 

obtained by minimizing these components. By minimizing the leakage and 

1
 The work reported in this chapter is an extension from the author’s Journal paper [HTG14] 

published in IEEE/ACM Transactions on Audio, Speech, and Language Processing, 

February 2014 issue. 
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distortion, two variant LS approaches, namely, minimum leakage LS (MLLS) 

and minimum distortion LS (MDLS) are proposed in this chapter, respectively. 

This derivation is followed by a comparative study on the performance of these 

PAE approaches. Based on our observations of this comparison, another 

approach referred to as the adjustable LS (ALS) is proposed, which offers 

adjustable error performance between the distortion and extraction error.  

The rest of this chapter is organized as follows. In Section 3.1, we review 

the stereo signal model, and the key assumptions of this signal model. 

Subsequently, the linear estimation framework of PAE and two groups of 

performance measures are presented in Section 3.2. Section 3.3 discusses 

several approaches applied in PAE. Section 3.4 presents our discussion on the 

simulation results, which leads to our recommendations in applying the PAE 

approaches in different applications. Section 3.5 concludes this work. 

 

3.1 Stereo signal model 

Sound scenes in moving pictures and video games usually comprise several 

point-like sound sources (or primary component) and the environmental 

ambient sound (or ambient component) [Hol08]. PAE aims to separate the 

primary component from the ambient component based on their perceptual 

spatial features. The perceptual spatial features can be characterized by the 

inter-channel relationships, including inter-channel time difference (ICTD), 

inter-channel level difference (ICLD), and inter-channel cross-correlation 

coefficient (ICC) [BaF03]. Since the number of primary sources is usually 

unknown and might be varying, a common practice in spatial audio processing 
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is to convert the signals into time-frequency domain using short-time Fourier 

transform (STFT) [AvJ04], [GoJ07b], [GoJ07a], [Pul07], [Fal06], [MGJ07], 

[FaB03] or subband via filter banks like hybrid quadrature mirror filter banks 

[BHK07]. For each frequency band or subband, it is generally assumed that the 

primary component of the input signal is composed of only one dominant 

source [AvJ04], [GoJ07b], [Fal06], [MGJ07]. Denoting the bth subband of 

input stereo signals (denoted by the subscript 0, and 1) at time frame index m as 

     0 0 0, , , , 1, ,
T

m b x mN b x mN N b    x  and 

     1 1 1, , , , 1, ,
T

m b x mN b x mN N b    x where N is the length of one 

frame. PAE is carried out in each subband of each frame independently, and the 

extracted primary and ambient components are combined via inverse STFT or 

synthesis filter banks. Here, a non-overlapping case of the signal frames is 

considered, though extension to the overlapping case is quite straightforward. In 

this chapter, the time-domain stereo signal model is expressed as: 

 

     

     
0 0 0

1 1 1

, , , ,

, , , ,

m b m b m b

m b m b m b

 

 

x p a

x p a
 (3.1) 

where  and 0 1,a a  are the primary and ambient components in the two 

channels of the stereo signal, respectively. Since the subband of the input signal 

is generally used in the analysis of PAE approaches, the indices  ,m b  are 

omitted for brevity. Fig. 3.1 shows the stereo signal model and the input and 

output of PAE. 

The stereo signal model also assumes that the primary components in the 

two channels are correlated, whereas the ambient components in the two 

channels are uncorrelated. The correlation coefficient between the two channels 

0 1,p p
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of the signal ix  and 
jx  is defined as        0 0 ,ij ij ii jjr r r    where 

     
1

, ,
mN N

ij i j

n mN

r x n b x n b 
 



     is the correlation between ix  and 
jx  at 

lag .  Two signals are considered correlated when  max 1;ij


  

uncorrelated when  max 0;ij


    and partially correlated when 

 0 max 1.ij


    

Correlated primary component in the stereo signal can be described by one 

of the following conditions [Bla97]:  

(i) amplitude panned, i.e., 1 0 ,kp p  where k is referred to as the primary 

panning factor (PPF);  

(ii) time shifted, i.e., 1 0 0( ) ( ),p n p n    where 1( )p n  is the nth sample of 

1p  and 0  is the ICTD (in samples); and  

PAE

Input 

signal

p0

p1

+

a0

a1

x0

x1

Extracted 

components

True 

components

0 1
ˆ ˆ,p p

0 1
ˆ ˆ,a a

Stereo signal model

+

 

Figure 3.1 Extraction of the primary and ambient components using PAE, 

where  are the input stereo signals;  0 1,p p  and 0 1,a a  are the true 

primary and ambient components, respectively; 0 1
ˆ ˆ,p p  and 0 1

ˆ ˆ,a a  are the 

extracted primary and ambient components, respectively. 

 

0 1,x x
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(iii) amplitude panned and time shifted, i.e., 1 0 0( ) ( ).p n kp n     

In this signal model, we only consider the primary component to be amplitude 

panned by PPF k [GoJ07b], [Fal06], [MGJ07]. This amplitude panned primary 

component is commonly found in stereo recordings using coincident techniques 

and sound mixes using conventional amplitude panning techniques [Hol08]. For 

an ambient component that consists of environmental sound, it is usually 

considered to be uncorrelated with the primary component [UsB07], [KDN09], 

[HGC09]. The ambient component in the two channels is also assumed to be 

uncorrelated and relatively balanced in terms of power, considering the 

diffuseness of ambient component. To quantify the power difference between 

the primary and ambient components, we introduce the primary power ratio 

(PPR) ,  which is defined as the ratio of total primary power to total signal 

power in two channels: 

    
0 1 0 1

,P P P P   p p x x  (3.2) 

where 
 .P  denotes the mean square power of the signal in the subscript. From 

(3.2), it is clear that γ ranges from zero to one. Summarizing the assumptions 

for the stereo signal model, we have 

 
 1 0 0 1,  ,  , , 0,1 ,i jk i j    p p a a p a

  (3.3) 

 
1 0 1 0

2 ,   ,P k P P P 
p p a a

 (3.4) 

where   represents that two signals are uncorrelated. 

Given any stereo input signal that fulfills the above conditions, the 

relationships between the auto-correlations 00 11,  r r   and cross-correlation 01r  

at zero-lag and the power of these components can be expressed as 
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  
0 0 000 0 0 ,Hr NP N P P   

x p a
x x  (3.5) 

  
1 0 0

2

11 1 1 ,Hr NP N k P P   
x p a

x x  (3.6) 

 
001 0 1 0 1 ,H Hr NkP  

p
x x p p  (3.7) 

where H is the Hermitian transpose operator. From (3.5)-(3.7), the PPF(k) and 

PPR( ) of the stereo signal are derived as: 

 

2

11 00 11 00

01 01

1,
2 2

r r r r
k

r r

  
   

 
 (3.8) 

 
 

 
01 11 00

11 00

2
.

r r r k

r r k


 



 (3.9) 

The primary component is panned to channel 1 for 1k   and to channel 0 for 

1.k   In spatial audio, the PPF is considered as the square root of ICLD. Only 

the primary or ambient component is found in the stereo signal for 1   or 

0,   respectively. In other words, the primary component becomes more 

prominent as   increases. In the following sections, we shall see that PPF and 

PPR are useful parameters for the extraction of the primary and ambient 

components, as well as to evaluate the performance of the PAE approaches. 

 

3.2 Linear estimation framework and performance 

measures 

In this chapter, we examine the blind extraction of primary and ambient 

components from a stereo input signal. Inspired by the mixing signal model 

given in (3.1), we address the PAE problem based on a linear estimation 

framework, where the primary and ambient components are estimated as 
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weighted sums of the stereo signals in two channels. Thus, the extracted 

primary and ambient components are expressed as 

 

P0,0 P0,10

P1,0 P1,1 0 01

A0,0 A0,10 1 1

A1,0 A1,11

ˆ

ˆ
,

ˆ

ˆ

T

T TT

T T T

T

w w

w w

w w

w w

   
   

      
       

         
     

p

x xp
W

a x x

a

 (3.10) 

where 0 1
ˆ ˆ,p p  and 0 1

ˆ ˆ,a a  are the extracted primary and ambient components in 

the two channels, respectively; T is the transpose operator; and 
 .w  is the 

estimated weight of the extracted component, where the first subscript refers to 

the output signal, with “P” or “A” denotes the primary or ambient component, 

respectively, and the following number denotes the channel of the extracted 

component; and the second subscript denotes the channel of the input signal. 

Using this formulation, the PAE problem is simplified to the estimation of 

weighting matrix W.  

Based on the weighting matrix W, we shall introduce two groups of 

measures to evaluate the objective performance of the linear estimation based 

PAE approaches. The first group measures the extraction accuracy of the 

primary and ambient components, whereas the second group examines the 

accuracy of the localization cues for the primary component and diffuseness for 

the ambient component.  

3.2.1 Group 1: measures for extraction accuracy  

In [MGJ07], the extraction accuracy of PAE approaches is evaluated by the 

similarity measures based on the cross-correlation coefficient between the 

extracted and true components. While these measures quantify the overall 
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performance of the PAE approaches, these measures are unable to provide 

in-depth insights on possible causes for the performance degradation. In this 

subsection, we shall analyze the components that form the extraction error of 

the PAE approaches, and propose four performance measures to quantify the 

extraction error. A similar decomposition on the error components with 

corresponding measures can be found in source separation [VGF06] and speech 

enhancement [HaR09], where different beamformers are derived using different 

error components as criteria. In the following, we discuss the error measures for 

the primary component, followed by the ambient component. 

Considering the error between the extracted primary component 0p̂  and its 

true component 0 ,p  we have 

 P 0 0
ˆ . e p p

  (3.11) 

Based on (3.11), we compute the error-to-signal ratio (ESR) for the primary 

component, which is defined as the ratio of the power of the extraction error to 

the power of the true primary component: 

 0P
PESR .P P

e p
  (3.12) 

Note that the ESR is equivalent to the normalized mean-squar-error (NMSE).  

Based on (3.10), 0p̂  can be expressed as 

 0 P0,0 0 P0,1 1
ˆ .w w p x x

 (3.13) 

According to the assumptions stated in (3.3) and substituting (3.1) into (3.13), 

we have 

 

   

 

   

0 P0,0 0 P0,1 1 P0,0 0 P0,1 1

P0 0 P0,0 0 P0,1 1

0 P0 0 P0,0 0 P0,1 1

ˆ

1 ,

w w w w

w w w

w w w

   

  

    

p p p a a

p a a

p p a a

 (3.14) 
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where P0 P0,0 P0,1w w kw   is the weight of 0p  in the extracted component 

0
ˆ .p  Substituting (3.14) into (3.11), the extraction error becomes 

    P P0 0 P0, 0 0 P0, 1 1 P P1 ,w w w Dist Leak     e p a a  (3.15) 

where  P P0 01Dist w  p  and P P0,0 0 P0,1 1Leak w w a a  are the distortion 

and leakage in the extraction error, respectively. The distortion comes from the 

extraction weight P0 ,w  which fluctuates from frame to frame, causing 

variations in sound timbre or level. We consider the primary component to be 

completely extracted and hence distortionless when P0 1.w   On the other 

hand, the leakage of the extracted primary component PLeak  originates from 

the true ambient components 0a  and 1a of the stereo signal. We consider the 

ratios of the distortion and leakage power to the power of true primary 

component, as the distortion-to-signal ratio (DSR) [BCH11] and the 

leakage-to-signal ratio (LSR), respectively: 

 
P 0

P 0

P

P

DSR ,

LSR .

Dist

Leak

P P

P P





p

p

 (3.16) 

Similar performance measures are also obtained to quantify the ambient 

extraction error. Based on (3.10), the extraction error of the ambient component 

is rewritten as 

    
A 0 0

A0,0 0 A0,1 1 A0,0 0 A0,1 1

A A A

ˆ

1

,

w w w w

Dist Intf Leak

 

    

  

e a a

a a p p  (3.17) 

where the three components in Ae :  A A0,0 0 A A0,1 11 ,  ,Dist w Intf w  a a  

and A A0,0 0 A0,1 1Leak w w p p  are the distortion, interference, and leakage, 

respectively. Similar to primary extraction, the distortion comes from the 
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extraction weight A0,0 ,w  and the ambient component is considered to be 

distortionless when A0,0 1.w   Interference AIntf  is produced by the 

uncorrelated ambient component in the counterpart channel 1,a  whereas the 

leakage of the extracted ambient component ALeak originates from true 

primary components 0p  and 1.p  The extraction error of the ambient 

component and its three error components are quantified by the ratios of their 

power to the power of true ambient component, as ESR, DSR, 

interference-to-signal ratio (ISR), and LSR, which are given as 

 

A 0

A 0

A 0

A 0

A

A

A

A

ESR ,

DSR ,

ISR ,

LSR .

Dist

Intf

Leak

P P

P P

P P

P P









e a

a

a

a

 (3.18) 

Comparing the measures of extraction error for the primary and ambient 

components, we find that no interference is found in the extracted primary 

component due to the unity correlation of the primary component. For both the 

primary and ambient components, ESR quantifies the overall error of the 

extracted component, and DSR, ISR, LSR provide detailed information on the 

extraction performance. In particular, LSR corresponds to the perceptual 

difference between the primary and ambient components. Both the interference 

and distortion in the extracted primary (or ambient) component come from the 

differences in this primary (or ambient) component between the two channels, 

hence they often exhibit some perceptual similarity with the true primary (or 

ambient) component. However, leakage solely comes from the ambient (or 

primary) component. Consequently, leakage is much more noticeable and 

undesirable than interference and distortion. Thus, we consider LSR to be the 
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most important measure among DSR, ISR, and LSR for many applications. 

Nevertheless, more emphasis should be placed on DSR when sound timbre or 

amplitude is of high importance. 

3.2.2 Group 2: measures for spatial accuracy 

In the second group of measures, we consider the spatial accuracy of the 

extracted primary component based on three widely used spatial cues, namely, 

ICC, ICTD, and ICLD. These cues are used to evaluate the sound localization 

accuracy of the extracted primary component [Rum01], [Bla97]. There have 

been many studies to estimate ICTD after the coincidence model proposed by 

Jeffress (see [Jef48], [JSY98] and references therein). Based on the Jeffress 

model [Jef48], the ICC at different time lags is calculated and the lag index 

corresponds to the maximum ICC is the estimated ICTD. ICLD is obtained by 

taking the ratio of the power between the signals in two channels.  

As the ambient component is assumed to be uncorrelated and balanced in 

the two channels, ICC and ICLD are selected as the measures to determine the 

diffuseness of the extracted ambient component [AnC09]. A better extraction of 

the ambient component is obtained when the ICC and ICLD of the extracted 

ambient component are closer to zero and one, respectively. 

 

3.3 Linear estimation based PAE approaches 

Following the discussions in Section 3.2, we shall derive the solutions for 

PAE approaches using linear estimation. These solutions are obtained by 

optimizing the weights in W for different criteria in PAE, including the 
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minimization of the correlation between primary and ambient components, and 

the minimization of different error components. In this section, an analytic 

study and comparison of five linear estimation based PAE approaches including 

three proposed approaches will be presented. 

3.3.1 PAE using principal component analysis 

Principal component analysis is a widely used method in multivariate 

analysis [Jol02]. The central idea of PCA is to linearly transform its input 

sequence into orthogonal principal components with descending variances. 

PCA was first introduced to solve the PAE problem in [IrA02]. In general, the 

primary component is assumed to possess more power than the ambient 

component, i.e., 0.5.   Hence, it is a common practice to relate the larger 

eigenvalue to the primary component and the smaller eigenvalue to the ambient 

component. Based on the stereo signal model, PAE using PCA decomposition 

can be mathematically described as [MGJ07]: 

 

 

 
P

A

2 2

P P 0 P 1

2 2

A A 0 A 1

P A P A

arg max ,  

arg min ,  

s.t. ,  1,

T T

T T

 

 

  

u

u

u u x u x

u u x u x

u u u u

 (3.19) 

where Pu  and Au  are the primary and ambient basis vectors, respectively. As 

depicted in Fig. 3.2, Pu  and Au  maximizes and minimizes the total 

projection energy of the input signal vectors, respectively. The solution to (3.19) 

can be obtained by eigenvalue decomposition of the input covariance matrix 

[GoJ07b]. 

First, we find the larger eigenvalue and its corresponding primary basis 
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vector [GoJ07b], [MGJ07] as 

  
2 2

P 00 11 00 11 010.5 4 ,r r r r r      
  

 (3.20) 

  P 01 0 P 00 1.r r  u x x  (3.21) 

Next, we compute the extracted primary components as 

 

P 0
PCA,0 P

P P

P 1
PCA,1 P

P P

ˆ ,  

ˆ .

H

H

H

H





u x
p u

u u

u x
p u

u u

 (3.22) 

However, the above solution of the extracted primary components is too 

complex in terms of its computation. Using (3.5)-(3.9), we can simplify the 

expressions for the extracted primary components using PCA as follows 

(detailed derivation can be found in Appendix A): 

 

 

 

PCA,0 0 12

PCA,1 0 1 PCA,02

1
ˆ ,  

1

ˆ ˆ .
1

k
k

k
k k

k

 


  


p x x

p x x p

 (3.23) 

Similarly, the extracted ambient components are obtained as 

Pu

Au 0x

1x PCA, 1â

PCA, 0â

PCA, 1p̂

PCA, 0p̂

 

Figure 3.2 A geometric representation of PCA based PAE 
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 

 

PCA,0 0 12

PCA,1 0 1 PCA,02

ˆ ,  
1

1 1
ˆ ˆ .

1

k
k

k

k
k k

 


    


a x x

a x x a

 (3.24) 

From (3.23)-(3.24), we observe that the weights for the extracted primary 

and ambient components are solely dependent on the PPF k. Between the two 

channels, the primary components are amplitude panned by a factor of k, 

whereas the ambient components are negatively correlated and panned to the 

opposite direction of the primary components, as indicated by the scaling factor 

1 .k  Clearly, the assumption of the uncorrelated ambient components in the 

stereo signal model does not hold considering the ambient components 

extracted using PCA. This drawback is inevitable in PCA since the ambient 

components in two channels are obtained from the same basis vector. 

Nevertheless, as the primary and ambient components are derived from 

different basis vectors, the assumption that the primary components are 

uncorrelated with the ambient components is well satisfied in PCA. 

By substituting the true primary and ambient components into (3.23) and 

(3.24), we have 

 

 

 

PCA,0 0 0 12

PCA,1 1 0 12

1
ˆ ,  

1

ˆ ,
1

k
k

k
k

k

  


  


p p a a

p p a a

 (3.25) 

 

2

PCA,0 0 12 2

PCA,1 1 02 2

ˆ ,  
1 1

1
ˆ .

1 1

k k

k k

k

k k

 
 

 
 

a a a

a a a

 (3.26) 

Since there is no primary component in (3.26), (3.26) or (3.24) that comes from 

the basis vector with the smaller eigenvalue cannot be related with the 

extraction of the primary components. That is to say, the basis vector with 
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larger eigenvalue always corresponds to the primary component regardless of 

the value of the primary power ratio γ. This observation reveals that the 

assumption 0.5   in PCA is redundant. However, if this assumption is not 

satisfied in the stereo input signal, the extraction error of the extracted primary 

component becomes higher, as inferred from (3.25). 

Furthermore, it is observed from (3.25) that the primary component is 

completely extracted by PCA, and no primary components are found in the 

extracted ambient components. On the other hand, the extracted primary 

components suffer from the ambient leakage, i.e., 

   0 1 0 12 2

1
,  and .

1 1

k
k k

k k
 

 
a a a a  The severity of ambient leakage increases as 

the ambient power increases. In other words, dominant primary components 

lead to better extraction performance using PCA. Some variants of PCA based 

PAE approaches that improve the PAE performance for stereo signal containing 

non-dominant primary component are discussed in [God08], [JHS10], [BJP12]. 

3.3.2 PAE using least-squares 

Least-squares estimation is frequently used to approximate solutions for 

over-determined systems. According to the stereo signal model, Faller 

introduced LS to extract the primary and ambient components by minimizing 

the MSE of the extracted components [Fal06]. Considering the extraction of the 

primary component, the extraction error expressed in (3.15) can then be 

rewritten as 

  P 0 0 P0,0 P0,1 0 P0,0 0 P0,1 1
ˆ 1 ,w kw w w      e p p p a a  (3.27) 

and the MSE is 
P P .HJ E    e e  By substituting the assumptions and 
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relationships of the signal model stated in (3.2)-(3.4) and (3.27), the MSE 

becomes 

0

0

2 2

P0,0

2 2 2

P0,1 P0,0 P0,1 P0,0 P0,1

1
1 ( 1)

2

1
( 1) 2 2 2 1 .

2

J P k w

P k k w w kw kw w









 
   

 

  
        

  

p

p

 (3.28) 

Hence, the weights can be easily obtained by taking the gradients of J with 

respect to 
P0,0 P0,1,w w  and equating their results to zero. The weights of the 

primary component extracted by LS are found to be   

 
P0,0 P0,12 2

2 1 2
,  .

1 1 1 1

k
w w

k k

 

 
 

   
 (3.29) 

Similarly, the weights for the remaining components can also be derived. The 

extracted primary and ambient components using LS are thus expressed as 

 

 

 
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2 1
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1 1

2
ˆ ,

1 1

k
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k
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k









 
 

 
 

p x x

p x x

 (3.30) 
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  
 
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  
  

   

a x x

a x x

 (3.31) 

From (3.30)-(3.31), we observe that the weights for the extracted primary and 

ambient components are not only dependent on k, but also related to γ. As 

compared with PCA, the panning relationship of k between the extracted 

primary components in the two channels still holds, but no explicit panning is 

found in the extracted ambient components using LS. 
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3.3.3 PAE using minimum leakage least-squares 

As discussed in Section 3.2, three types of error may be found in the 

extracted components, namely, the distortion, interference, and leakage. The 

leakage is the most undesirable among the three, and priority should be given to 

the minimization of the leakage in the extraction process. We therefore propose 

MLLS, which minimizes the extraction error with the constraint that the 

leakage is minimum in the extracted components. The amount of leakage power 

in the extracted primary or ambient component can be quantified by the 

leakage-to-extracted-signal ratio (LeSR), which is given as 

 
P A0 0ˆ ˆP ALeSR ,   LeSR .Leak LeakP P P P 

p a
 (3.32)  

Minimum leakage in the extracted components is achieved by minimizing 

LeSR. For the extracted primary component, the leakage comes from the 

ambient components. Using (3.15) and (3.26), the LeSRP is computed as: 

 
 

   
0
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2 2
P0,0 P0,1

P 2 2 2
P0,0 P0,1 P0,0 P0,1

LeSR .
w w P

w kw P w w P



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a

p a

 (3.33) 

Minimizing LeSRP with respect to P0,0 P0,1, ,w w we have 

 P0,1 P0,0.w kw  (3.34) 

Next, we substitute (3.34) into the extraction error given by (3.15), and the 

extraction error becomes 

  2
P P0,0 0 P0,0 0 P0,0 11 1 .k w w kw     

 
e p a a  (3.35) 

Based on (3.12) and (3.35), the ESRP is expressed as 

 
   

0 0

0

2
2 2 2 2

P0,0 P0,0 P0

P

,0
ESR .

1 1k w P w k w P

P

    
  p a

p

 (3.36) 
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By minimizing ESRP, we arrive at P0,0 2

2 1
,

1 1
w

k






 
 and P0,1 2

2
.

1 1

k
w

k






 
 

Finally, we can express the primary component in channel 0 extracted by 

MLLS as 

  MLLS,0 0 12

2 1
ˆ ,

1 1
k

k




 

 
p x x  (3.37) 

The remaining components extracted by MLLS can be obtained similarly, and 

are found to be  

  MLLS,1 0 12

2
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1 1

k
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
 
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p x x  (3.38) 
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a x x
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 (3.39) 

3.3.4 PAE using minimum distortion least-squares 

Inspired by the popular minimum variance distortionless response (MVDR) 

filter [Cap69], we propose the minimum distortion least-squares in PAE by 

minimizing the extraction error ESR, with the constraint that the extracted 

component is distortionless. Mathematically, we can express the objective 

function of MDLS as min ESR s.t. DSR 0.
w

 Similar to the steps in MLLS, the 

solution for each extracted component can be derived as: 
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 (3.40) 
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 (3.41) 

3.3.5 Comparison among PCA, LS, MLLS, and MDLS in PAE 

In this subsection, we compare the relationships and differences, as well as 

the performance among the four linear estimation based PAE approaches. The 

 

Figure 3.3 Objectives and relationships of four linear estimation based PAE 

approaches. Blue solid lines represent the relationships in the primary 

component, and green dotted lines represent the relationships in the ambient 

component. 
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key minimization criteria and relationships of these approaches are illustrated in 

Fig. 3.3. Based on the linear estimation framework, PCA minimizes the 

correlation between the primary and ambient components, whereas LS, MLLS, 

and MDLS aim to minimize the extraction error, leakage, and distortion, 

respectively, for both the primary and ambient components. Some interesting 

relationships can be found for the primary components extracted using these 

approaches. From (3.23) and (3.40), we find that  PCA, MDLS,
ˆ ˆ , 0,1 .i i i  p p  

This equivalence implies that PCA extracts the primary component with 

minimum distortion, even though PCA does not explicitly specify this 

constraint as found in MDLS. From (3.30) and (3.37)-(3.38), we observe that 

LS, MLLS,
ˆ ˆ .i ip p  This equivalence implies that LS extracts the primary 

component with minimum leakage, even though LS does not explicitly specify 

this constraint as found in MLLS. There is an amplitude difference between the 

primary components extracted by MLLS and by MDLS, i.e., 

 
MLLS, P MDLS,

ˆ ˆ ,i icp p  (3.42) 

where the scaling factor  P 2 1 .c     Since P[0,1],  1,c    it is clear 

that the primary component extracted by MLLS has lower power than the 

primary component extracted by MDLS for all 1.   

Similarly, we noted a few interesting relationships for the extracted ambient 

component. Based on (3.24) and (3.39), it is interesting to find that 

PCA, MLLS,
ˆ ˆ .i ia a This equivalence implies that PCA extracts the ambient 

component with minimum leakage, even though PCA does not explicitly 

specify this constraint as found in MLLS. From (3.31) and (3.41), there is also 
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an amplitude difference between the ambient components extracted by MDLS 

and LS, which is given by 

 LS, A, MDLS,
ˆ ˆ ,i i ica a  (3.43) 

where 
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 As compared to (3.42), the scaling factor 

in the extracted ambient components differs from channel 0 to channel 1. 

Next, we present a comparative analysis on the performance of these four 

PAE approaches. Here, we summarize the results of the performance measures 

obtained with channel 0 in Table 3.1. Due to the symmetry in the stereo signal 

model, the measures for channel 1 can be obtained by replacing k in the results 

in Table 3.1 with its reciprocal. From Table 3.1, it is clear that the two groups 

of measures are highly dependent on γ and/or k.  

Table 3.1 Results of performance measures for PCA, LS, minimum leakage 

LS, and minimum distortion LS in PAE. 
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For the primary extraction, we have the following observations of MDLS 

(or PCA) and MLLS (or LS) based on the measures in Table 3.1. In Group 1, 

lower ESR and LSR of the extracted primary component are observed in MLLS 

as compared to MDLS. The distortion measure DSR = 0 indicates that primary 

component extracted using MDLS (or PCA) is free of distortion, whereas the 

distortion in MLLS (or LS) increases as γ decreases. Hence, MLLS (or LS) 

extracts primary component with minimum leakage and error at the expense of 

introducing some distortion in the extracted primary component. All four 

approaches extract primary component without interference. According to the 

spatial cues (ICC, ICTD, and ICLD) of the primary component in Group 2, all 

four approaches are capable of preserving the correct spatial information in the 

extracted primary component. 

For the ambient extraction, we have the following observations of MLLS 

(or PCA), LS, and MDLS based on the measures in Table 3.1. In Group 1, we 

observe that LS has the lowest ESR. The measure LSR = 0 found in MLLS 

indicates that no primary components are leaked into the extracted ambient 

component. In contrast, a certain amount of primary leakage is found in 

ambient component extracted using LS or MDLS. As for DSR, only MDLS 

extracts the ambient component without distortion. The overall best 

performance on the ambient extraction is achieved using LS based on the 

measures of diffuseness in Group 2, but none of the approaches is able to 

extract an uncorrelated and balanced ambient component. Therefore, some 

post-processing techniques such as decorrelation [Fal06b] and post-scaling 

[Fal06] should be used to enhance the ambient extraction.   
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3.3.6 PAE using adjustable least-squares 

In this subsection, we propose the adjustable least-squares, which is 

designed to achieve an adjustable performance in terms of extraction error and 

distortion, as well as producing minimum leakage in the extracted primary and 

ambient components. Similar to (3.34), by minimizing the leakage LeSR in the 

extracted primary and ambient components, we have 

P0,1 P1,1 P0,0 P1,0, , ,w w k w w       and 1

A0,1 A1,1 A0,0 A1,0, , ,w w k w w         

respectively. To achieve the adjustable performance in terms of extraction error 

and distortion, we introduce the adjustable factor β where 0 1.   By letting 

β = 0, and β = 1, we can achieve the minimum distortion and extraction error, 

respectively. Based on our analysis of the four PAE approaches, the weights in 

ALS are obtained as 

PCA/

MDLS

LS/

MLLS

PCA/

MLLS

0 Min

distortion

Min

error

ALS

(Min 

leakage)

1 

 

Figure 3.4 Characteristics and relationships of adjustable least-squares. Blue 

solid lines represent the relationships in the primary component, and green 

dotted lines represent the relationships in the ambient component. 
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Next, the three key performance measures for PAE using ALS are expressed as 
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 (3.46) 

From the above measures, it can be inferred that the extraction error ESR 

decreases and the distortion DSR increases gradually as β increases, whereas 

the measure for leakage LeSR remains constant and small. Since the adjustable 

factor β = 0 and β = 1 leads to minimum distortion and extraction error, 

respectively, other values of β between 0 and 1 yield an adjustable performance 

in terms of extraction error and distortion. For example, ALS with β = 0.5 

produces 75% reduction of extraction error and distortion in PAE. The 

characteristics of ALS and its relationships with other PAE approaches are 

illustrated in Fig. 3.4. By adjusting the value of β, ALS can achieve the 

performance of the previously discussed PAE approaches. Specifically, in 

primary extraction, ALS with β = 0 is equivalent to MDLS (or PCA), whereas 

ALS with β = 1 is equivalent to MLLS (or LS). In ambient extraction, ALS can 

be linked with MLLS (or PCA) by letting β = 1.  
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3.4 Experiments and discussions 

Since our focus in this chapter is to compare different linear estimation 

based PAE approaches, instead of the subband decomposition of the stereo 

signal, we shall consider only one primary component in the stereo signal in our 

simulations. A speech signal is selected as the primary component and 

uncorrelated white Gaussian noise with equal variance in two channels is 

synthesized as the ambient component in our simulations. To simulate the 

source panned to channel 1, the primary component is scaled by k = 5. 

Subsequently, the stereo signals are synthesized by linearly mixing the primary 

and ambient components using different values of primary power ratio PPR, 

ranging from zero to one. The performance of these PAE approaches is then 

evaluated using the performance measures introduced in Section 3.2. Based on 

 

Figure 3.5 Comparison of MDLS (or PCA) and MLLS (or LS) in primary 

extraction, (a) error-to-signal ratio ESR; (b) leakage-to-signal ratio LSR, (c) 

distortion-to-signal ratio DSR. Legend in (a) applies to all plots. 
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our simulations, we provide some recommendations for the applications using 

these PAE approaches.   

3.4.1 Comparison of PAE Using PCA, LS, MLLS and MDLS 

The simulation results of PAE using PCA, LS, MLLS, and MDLS are 

shown in Figs. 3.5-3.8. Recall that the extraction performance of the primary 

component is identical: (i) between PCA and MDLS, (ii) between LS and 

MLLS, we shall discuss the primary extraction for MLLS and MDLS only in 

this subsection. The extraction accuracy of the extracted primary components 

using MLLS and MDLS (same for the two channels) is shown in Fig. 3.5. 

Several observations from Fig. 3.5 are as follows. The extraction error given by 

ESRP reduces gradually as γ increases. The ESRP and LSRP for MLLS are 

relatively lower than those in MDLS, which indicates that MLLS is superior to 

MDLS in extracting the primary component in terms of the extraction error and 

leakage. However, the distortion of extracted primary component using MLLS 

increases as γ decreases, whereas no distortion is found with MDLS. These 

observations can be directly related to the objectives of these approaches. 

The difference in the performance for the extracted primary component 

between MLLS and MDLS is caused by the scaling difference, as expressed in 

(3.42). This scaling factor depends solely on PPR, which is determined by the 

power difference between true primary and ambient components in each frame. 

In the case of stationary primary and ambient components, the scaling factor is 

almost constant and leading to similar performance between MLLS and MDLS. 

However, there is a noticeable difference in the primary components extracted 

using MLLS and MDLS when the primary component is non-stationary. An 
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example to illustrate the variation of the scaling factor is shown in Fig. 3.6. It is 

observed that the scaling factor is fluctuating according to the power difference 

between primary and ambient components. The scaling factor rises closer to 

one when the primary component power is comparably stronger than the 

ambient component power, and the scaling factor drops to zero when the 

primary component becomes relatively weak compared to the ambient 

component. This example reveals that MLLS and MDLS behave similarly 

when primary component is dominant and only MLLS can extract weak 

primary component at the ambient-dominant periods of the signal. As a result, 

MLLS has lower ESRP but the extracted primary component may possess some 

discontinuity and more distortion, compared to MDLS. 

 

Figure 3.6 Scaling difference between the primary components extracted 

using MLLS and MDLS. 
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The performance of ambient extraction using PCA, LS, MLLS and MDLS 

is illustrated in Fig. 3.7. Unlike the primary extraction, the performance of 

ambient extraction has significant variation between the two channels. Due to 

the weaker primary component in channel 0, the performance of ambient 

extraction in channel 0 is better than that in channel 1 as shown in our 

simulations. Nevertheless, some common characteristics in the performance of 

ambient extraction in the two channels are observed. We found that LS has the 

lowest extraction error (Fig. 3.7(a)-(b)), whereas MLLS (or PCA), and MDLS 

can completely remove the leakage (Fig. 3.7(c)-(d)) and distortion (Fig. 

3.7(e)-(f)), respectively. However, MDLS extracts the ambient component in 

 

Figure 3.7 Comparison of ambient extraction (k = 5) with MLLS (or PCA), 

LS and MDLS for channel 0 (top row) and channel 1 (bottom row). (a)-(b) 

error-to-signal ratio ESR; (c)-(d) leakage-to-signal ratio LSR; (e)-(f) 

distortion-to-signal ratio DSR; (g)-(h) interference-to-signal ratio ISR. 

Legend in (a) applies to all plots. 
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channel 1 with much higher extraction error, leakage, and interference than the 

other PAE approaches.  

In Figs. 3.8 and 3.9, we show the results of ambient extraction under 

different values of PPF, i.e., k = 3 and k = 1, respectively. With a smaller k, the 

extraction error performance between the two channels becomes closer. For 

3,  5k  , we can observe a very similar relation in various error performance, 

with the difference on the scale. Whereas for k = 1, the performance of MDLS 

becomes worse than MLLS or LS when PPR is high. Nevertheless, these 

methods still achieve the respective optimal performance in terms of different 

performance measures. That is, LS minimizes ESR, MLLS (or PCA) minimizes 

LSR, and MDLS minimizes DSR. 

Finally, we examine the spatial accuracy of the extracted primary and 

ambient components (k = 5), as shown in Fig. 3.10. Since the extracted primary 

 

Figure 3.8 Comparison of ambient extraction (k = 3) with MLLS (or PCA), 

LS and MDLS for channel 0 (top row) and channel 1 (bottom row). (a)-(b) 

ESR; (c)-(d) LSR; (e)-(f) DSR; (g)-(h) ISR. Legend in (a) applies to all 

plots. 
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components are all scaled by k between the two channels, the ICC and ICTD of 

the primary components are the same as the true values, and the ICLDP is also 

very close to its true value, as shown in Fig. 3.10(a). However, from the results 

 

Figure 3.10 Comparison of ambient extraction (k = 1) with MLLS (or PCA), 

LS and MDLS for channel 0 (top row) and channel 1 (bottom row). (a)-(b) 

ESR; (c)-(d) LSR; (e)-(f) DSR; (g)-(h) ISR. Legend in (a) applies to all 

plots. 
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Figure 3.9 Comparison of spatial accuracy (k = 5) in PCA, LS, MLLS, and 

MDLS. (a) ICLD estimation error in the extracted primary component; (b) 

ICC of the extracted ambient component; and (c) ICLD estimation error in 

the extracted ambient component. 
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of ICCA and ICLDA shown in Fig. 3.10(b) and 3.10(c), respectively, we found 

that none of these approaches is able to extract uncorrelated and balanced 

ambient components. In Figs. 3.11 and 3.12, we also show the spatial accuracy 

with other values of PPF, i.e., k = 3 and k = 1, respectively. Similar trends can 

 

Figure 3.11 Comparison of spatial accuracy (k = 3) in PCA, LS, MLLS, and 

MDLS. (a) ICLD estimation error in the extracted primary component; (b) 

ICC of the extracted ambient component; and (c) ICLD estimation error in 

the extracted ambient component. 

  

Figure 3.12 Comparison of spatial accuracy (k = 1) in PCA, LS, MLLS, and 

MDLS. (a) ICLD estimation error in the extracted primary component; (b) 

ICC of the extracted ambient component; and (c) ICLD estimation error in 

the extracted ambient component. 
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be found with ICLDP, ICCA and ICLDA for the three different values of PPF. 

One exceptional is that the ICLDA estimation difference is very small when 

PPF k = 1. 

3.4.2 Performance of ALS in PAE 

The performance of PAE using ALS is shown in Fig. 3.13. The measures 

for extraction error, distortion, and leakage are examined with respect to the 

adjustable factor β. These measures for the primary components for both 

channels are presented in the plots in the left column. The results of the 

 

Figure 3.13 Measures for ALS with different values of adjustable factor β, 

error-to-signal ratio ESR (top row), distortion-to-signal ratio DSR (middle 

row), and leakage-to-extracted-signal ratio LeSR (bottom row), for the 

primary component (left column), the ambient component in channel 0 

(middle column), and the ambient component in channel 1 (right column). 

Legend in (a) applies to all plots. Three lines in each plot represent different 

values of PPR γ. 
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measures for ambient extraction for the channels 0 and 1 are presented in the 

plots in the middle and right columns, respectively. From the plots of the top 

and middle rows, we observed that larger values of β lead to lower extraction 

error (as shown by ESR) but higher distortion (as shown by DSR). Nevertheless, 

the leakage as quantified by LeSR remains at a very low level for all values of β, 

as shown in the plots in the bottom row. These observations verified that the 

adjustable performance in terms of extraction error and distortion using ALS is 

achieved by adjusting β. 

3.4.3 General guidelines in selecting PAE approaches 

Generally, the selection of the PAE approaches depends on the 

post-processing techniques and playback systems that are associated with the 

specific audio application, as well as the audio content and user preferences. 

Several guidelines on the applications of these PAE approaches can be drawn 

from our analysis and discussions. In Table 3.2, we summarize the strengths, 

weaknesses of different PAE approaches, and provide some recommendations 

on their applications. in Table 3.2. In applications like spatial audio coding and 

interactive audio in gaming, where the primary component is usually more 

important than the ambient component, PCA would be a better choice. In the 

case where both the primary and ambient components are extracted, processed, 

and finally mixed together, the extraction error becomes more critical and hence 

LS is recommended. In some spatial audio enhancement systems, where the 

extracted primary or ambient component is added back to the original signal to 

emphasize the extracted component, accurate extraction of the primary or 

ambient component becomes the key consideration. For such systems, MLLS is 
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preferred as the leakage becomes the most important consideration. MLLS is 

also recommended when different rendering and playback techniques are 

employed on the extracted primary and ambient components. MDLS is more 

suitable for high-fidelity applications, where timbre is of high importance, such 

as in musical application. When there is no explicit requirement, ALS can be 

employed by setting the proper adjustable factor. 

 

Table 3.2 Strengths, weaknesses, and recommendations of different PAE 

approaches [HTG14] 

Approaches Strengths Weaknesses Recommendations 

PCA 

 No distortion in 

the extracted 

primary 

component; 

 No primary 

leakage in the 

extracted 

ambient 

component; 

 Primary and 

ambient 

components are 

uncorrelated; 

Ambient 

component 

severely panned; 

Spatial audio coding and 

interactive audio in gaming, 

where the primary component is 

more important than the ambient 

component. 

LS 

Minimum MSE in 

the extracted 

primary and 

ambient 

components; 

Severe primary 

leakage in the 

extracted ambient 

component;  

Applications in which both the 

primary and ambient components 

are extracted, processed, and 

finally mixed together. 

MLLS 

 Minimum 

leakage in the 

extracted 

primary and 

ambient 

components; 

 Primary and 

ambient 

components are 

uncorrelated; 

Ambient 

component 

severely panned; 

Spatial audio enhancement 

systems and applications in which 

different rendering or playback 

techniques are employed on the 

extracted primary and ambient 

components. 

MDLS 

No distortion in 

the extracted 

primary and 

ambient 

components; 

Severe 

interference and 

primary leakage in 

the extracted 

ambient 

component; 

High-fidelity applications in 

which timbre is of high 

importance. 

ALS 
Performance 

adjustable; 

Need to adjust the 

value of the 

adjustable factor; 

For applications without explicit 

requirements. 
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3.5 Conclusions 

In this chapter, we revisited the problem of primary ambient extraction 

(PAE) of stereo signals using linear estimation based approaches. Based on the 

stereo signal model, we formulated PAE as a problem to determine the 

weighting matrix under our linear estimation framework. Under this framework, 

we introduced two groups of performance measures and derived the solutions 

for two existing approaches, namely, principal component analysis (PCA), and 

least-squares (LS). Based on the objectives of minimum leakage, minimum 

distortion, and adjustable performance, we proposed three additional LS-based 

PAE approaches, namely, minimum leakage LS (MLLS), minimum distortion 

LS (MDLS), and adjustable LS (ALS). The relationships and differences of 

these PAE approaches are extensively studied. For primary extraction, PCA 

was found to be equivalent to MDLS in terms of minimum distortion; and LS is 

equivalent to MLLS in terms of minimum extraction error and leakage. The 

difference between extracted primary components using MDLS and MLLS is 

found to be a scaling factor, which is solely related to primary power ratio 

(PPR). All the discussed PAE approaches perform well for primary extraction 

but perform poorly in extracting ambient component when PPR is high. In 

ambient extraction, MLLS (or PCA), LS, and MDLS minimize the leakage, 

extraction error, and distortion, respectively. Adjustable LS offers an adjustable 

performance in terms of extraction error and distortion with the constraint of 

minimum leakage. Based on our discussions in this chapter, these PAE 

approaches are suggested in different spatial audio applications. In the 

following chapter, a different PAE framework will be discussed and compared 

with the linear estimation framework.  
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Chapter 4 

Ambient Spectrum Estimation based 

Primary Ambient Extraction 

 

Due to the nature of summing input signals directly [HTG14], the 

aforementioned PAE approaches, as studied in previous chapter, often have 

difficulty in removing uncorrelated ambient component in the extracted primary 

and ambient components. The extraction error in these PAE approaches is more 

severe when the ambient component is relatively strong compared to the 

primary component [HTG14], as often encountered in digital media content, 

including busy sound scenes with many discrete sound sources that contribute 

to the environment as well as strong reverberation indoor environment. 

According to [HGT15b], it is found that the percentage for the cases with over 

half of the time frames having relative strong ambient power is around 70% in 

these digital media content examples. Since high occurrence of strong ambient 

power case degrades the overall performance of PAE, a PAE approach that also 

performs well in the presence of strong ambient power is desired and 

investigated in this chapter
1
.  

In Section 4.1, we propose a new ambient spectrum estimation (ASE) 

framework to improve the performance of PAE. The ASE framework exploits 

1
 The work reported in this chapter is an extension from the author’s Journal papers 

[HGT15a] published in IEEE Signal Processing Letters, August 2015 issue, and [HGT15b] 

published in IEEE/ACM Transactions on Audio, Speech, and Language Processing, 

September 2015 issue. 
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the equal-magnitude characteristic of uncorrelated ambient components in the 

mixed signals of digital media content. These ASE problems are solved by 

pursuing the sparsity of the primary components [PBD10], as detailed in 

Section 4.2. To perform an in-depth evaluation of these PAE approaches, a 

novel technique to compute these measures for PAE approaches without 

analytic solutions, as is the case with the proposed ASE approaches, is proposed 

in Section 4.3. This is followed by the experiments to evaluate the PAE 

approaches in Section 4.4. Besides the comprehensive evaluation of these PAE 

approaches in ideal case, statistical variations are introduced to the ambient 

magnitudes to examine the robustness of the proposed ASE approaches. 

Furthermore, subjective listening tests are conducted to complement the 

objective evaluation. Finally, Section 4.5 concludes this chapter.  

 

4.1 Ambient spectrum estimation framework 

In this chapter, we denote the stereo signal in time-frequency domain at 

time frame index m and frequency bin index l as  , ,cX m l  where the channel 

index  0,1 .c  Hence, the stereo signal at subband b that consists of bins 

from 1 1bl    to bl   (where lb is the upper boundary of bin index at subband b) 

is expressed as        1 1, , 1 , , 2 , , ,
T

c c b c b c bm b X m l X m l X m l     X  

[GoJ06b]. The stereo signal model is expressed as: 

        , , ,    0,1 ,c c cm b m b m b c   X P A  (4.1) 



84 

 

where cP  and cA  are the primary and ambient components in the cth channel 

of the stereo signal, respectively. Since the frequency band of the input signal is 

generally used in the analysis of PAE approaches, the indices  ,m b  are 

omitted for brevity.  

The diffuseness of ambient components usually leads to low 

cross-correlation between the two channels of the ambient components in the 

stereo signal. During the mixing process, the sound engineers synthesize the 

ambient component using various decorrelation techniques, such as introducing 

delay [Rum99], all-pass filtering [Sch58], [PoB04], [Ken95b], artificial 

reverberation [Beg00], and binaural artificial reverberation [MeF09]. These 

decorrelation techniques often maintain the magnitude of ambient components 

in the two channels of the stereo signal. As such, we can express the spectrum 

of ambient components as  

  ,  0,1 ,c c c c  A A W  (4.2) 

where  denotes element-wise Hadamard product, 
0 1 A A A  is the 

equal magnitude of the ambient components, and the element in the bin (m, l) of 

cW  is    ,
, ,cj m l

cW m l e


  where  ,c m l  is the bin (m, l) of cθ  and 

c cθ A  is the vector of phase samples (in radians) of the ambient 

components. Following these discussions, we shall derive the ASE framework 

for PAE in two ways: ambient phase estimation (APE) and ambient magnitude 

estimation (AME). 
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4.1.1 Ambient phase estimation 

Considering the panning of the primary component 1 0,kP P  the primary 

component in (4.1) can be cancelled out and we arrive at 

 
1 0 1 0.k k  X X A A  (4.3) 

By substituting (4.2) into (4.3), we have 

    1 0 1 0. ,k k  A X X W W  (4.4) 

where . represents the element-wise division. Because ambient magnitude 

A  is real and non-negative, we derive the relation between the phases of the 

two ambient components. First, we rewrite 

   1 0 1 0 1 0cos cos sin sin .k k j k    W W θ θ θ θ  Since A  is real, we have 

the following relation:    1 0 1 0sin . cos sin sin . cos cos ,k k  θ θ θ θ θ θ  

which can be further rewritten as 

    1

0 1sin sin .k  θ θ θ θ  (4.5) 

Two solutions arise when solving for 0 :θ  

    1 2

0 0 ,  ,    θ θ θ θ    (4.6) 

where    1

1 =arcsin sin  and 0.5 ,0.5 .k    θ θ     Then we have 

 1

1sin  = sink  θ θ  and  2 2

1cos  = 1 sin .k  θ θ  Based on the other 

condition that ambient magnitude A  is nonnegative, the imaginary (or real) 

part of 1 0kW W  must have the same sign as the imaginary (or real) part of 

1 0.kX X  Next, we examine the two solutions for this condition. We take the 

first solution  1

0θ and rewrite the ratio of imaginary part of 1 0kW W to the 
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imaginary part of 1 0kX X as 

 

 

 
   

 

 

   

1 1

0 0

1 0 1 0

1 0

1

1

2 2

1 1

Im sin sin

Im sin

sin sin

sin

cos cos

cos 1 cos

0.

k k

k

k

k

k

   

 




 


     

       
 



θ θ θ θ

W W θ θ

X X θ

θ θ

θ

θ θ

θ θ θ θ

 



  (4.7) 

Therefore, the sign of the imaginary part of 1 0kW W  is different from the 

sign of imaginary part of 1 0 ,kX X  resulting in negative values for ambient 

magnitude .A  Therefore, the first solution in (4.6) is inadmissible. Similarly, 

we take the second solution  2

0θ and derive the ratio of imaginary part of 

1 0kW W to the imaginary part of 1 0kX X as 

 
 

 
     2

0

1 0 2 2

1 1

1 0

Im
cos 1 cos 0.

Im

k
k

k   

        
  θ θ

W W
θ θ θ θ

X X  
 (4.8) 

Therefore, the sign of the imaginary part of 1 0kW W  is the same from the 

sign of imaginary part of 1 0 ,kX X  ensuring nonnegative values in ambient 

magnitude .A  Hence, we can conclude that based on the second solution, the 

relation between the ambient phases in two channels is  

 
 

 
     2

0

1 0 2 2

1 1

1 0

Im
cos 1 cos 0.

Im

k
k

k   

        
  θ θ

W W
θ θ θ θ

X X  
 (4.9) 

where  1 0 .k θ X X  Furthermore, by substituting (4.4) and (4.2) into (4.1), 

we have 

 
   

     

1 0 1 0

c 1 0 1 0

. ,  

. ,  0,1 .

c c

c c

k k

k k c

  

    

A X X W W W

P X X X W W W
 (4.10) 
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Since cX  and k can be directly computed using the correlations of the input 

signals (refer to equation 3.8 in Chapter 3) [HTG14], 0 1,  and W W  are the only 

unknown variables on the right hand side of the expressions in (4.10). In other 

words, the primary and ambient components are determined by 0 1,  and ,W W  

which are solely related to the phases of the ambient components. Therefore, 

we reformulate the PAE problem into an ambient phase estimation (APE) 

problem. Based on the relation between 0θ and 1θ  stated in (4.9), only one 

ambient phase 1θ  needs to be estimated. 

O (0, 0)

B (BRe, BIm)

C (CRe, CIm)

Re

Im

'

0X

1X 1P

0k A

1A P (PRe, PIm)

  

Figure 4.1 Geometric representation of (4.11) in complex plane in AME 
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4.1.2 Ambient magnitude estimation 

To reformulate the PAE problem as an ambient magnitude estimation 

problem, we rewrite (4.1) for every time-frequency bin as: 

 

'

0 0 1 0

1 1 1

,  

.

X kX P kA

X P A

  

 
 (4.11) 

Consider these bin-wise spectra stated in (4.11) as vectors in complex plane 

(represented by an arrow on top), we can express their geometric relations in 

Fig. 4.1 as   

 

   

 

'

0 Re Im 1 Re Im

1 Re Im

0 1

OB B ,B ,  OC C ,C ,  

OP P ,P ,  

PB,  PC.

X X

P

k A A

   

 

 

 (4.12) 

Let r denote the magnitude of the ambient component, i.e., 0 1 .r A A   

Then we have PC ,  PB .r kr   Therefore, by drawing two circles with their 

origins at B and C, we can find their intersection point P (select one point when 

there are two intersection points), which corresponds to the spectrum of the 

primary component and leads to the solution for the extracted primary and 

ambient components. For any estimate of ambient magnitude ˆ,r  the 

coordinates of point P shall satisfy 

 
   

   

2 2 2 2

Re Re Im Im

2 2 2

Re Re Im Im

ˆP B P B ,

ˆP C P C .

k r

r

   

   
 (4.13) 

The solution of  Re ImP ,P  for (4.13) is given by: 
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    

    

2 2

Re Re Im ImRe Re
Re 2

2 2

Im Im Re ReIm Im
Im 2

ˆC B 1 B CB C
P̂ ,

2 2 BC

ˆC B 1 B CB C
P̂ ,

2 2 BC

k r

k r





   
 

  
 

 (4.14) 

where the Euclidean distance between the points B and C, 

   
2 2

Re Re Im ImBC C B C B     and 

   
2 22 22 2ˆ ˆ1 BC 1 BC .k r k r        

      
 Based on (4.12), the spectra of 

the primary and ambient components can then be derived as: 

 
 

   

1

1 Re Im 0 Re Im

1

1 1 Re Im 0 0 Re Im

ˆ ˆ ˆ ˆ ˆ ˆP P ,  P P ,  

ˆ ˆˆ ˆ ˆ ˆP P ,  P P .

P j P k j

A X j A X k j





   

     
 (4.15) 

Therefore, the PAE problem becomes the problem of determining r, i.e., 

ambient magnitude estimation. The approach to determine r and select one of 

the two solutions in (4.14) will be discussed in Section 4.2. It can be inferred 

from Fig. 4.1 that determining the ambient magnitude is equivalent to 

determine the ambient phase as either of them will lead to the other. Therefore, 

we conclude that APE and AME are equivalent and they are collectively termed 

as ambient spectrum estimation. The block diagram of the ASE based PAE is 

illustrated in Fig. 4.2. The input signals are transformed into time-frequency 

domain using e.g., STFT, and followed by the proposed ambient spectrum 

estimation stage, where either APE or AME can be used. After estimating the 

ambient phase or magnitude, the extracted primary and ambient components 

can be derived in time-frequency domain, which are finally transformed into 

time domain. We argue that in theory, by accurately obtaining the spectra of 

ambient components, it is possible to achieve perfect extraction (i.e., error-free) 
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of the primary and ambient components using the formulation of ASE, which is 

not possible with existing PAE approaches as a consequence of residue error 

from the uncorrelated ambient component [HTG14]. 

 

4.2 Ambient spectrum estimation with a sparsity constraint 

The proposed ambient spectrum estimation framework can greatly simplify 

the PAE problem into an estimation problem with only one unknown parameter 

per time-frequency bin. To estimate these parameters, we shall exploit other 

characteristics of the primary and ambient components that have not been used 

in previous derivations. One of the most important characteristics of sound 

source signals is sparsity, which has been widely used as a critical criterion in 

finding optimal solutions in many audio and music signal processing 

applications [PBD10]. In PAE, since the primary components are essentially 

directional sound sources, they can be considered to be sparse in the 

time-frequency domain [PBD10]. Therefore, we estimate the ambient phase or 

magnitude spectrum by restricting that the extracted primary component is 

  Find 
1θ

Compute

0 1 0 1
ˆ ˆˆ ˆ, , ,P P A A

Inverse T-F 

Transform

Extracted primary and 

ambient components

0 1 0 1
ˆ ˆ ˆ ˆ, , ,p p a a

Input signal

0 1,x x

  Find r

T-F 

Transform

Select 

ASE

APE

AME

 

Figure 4.2 Block diagram of ASE based PAE 
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sparse. We refer to these approaches as ambient spectrum estimation with a 

sparsity constraint (ASES). By applying the sparsity constraint in APE and 

AME, ASES can be divided into two approaches, namely, APES and AMES. 

4.2.1 Ambient phase estimation with a sparsity constraint 

With a sparsity constraint, the ambient phase estimation problem can be 

expressed as follows: 

 
1

*

1 1ˆ 1

ˆ ˆarg min ,
θ

θ P  (4.16) 

where 
1

1
P̂ is the 1-norm of the primary component, which is equal to the sum 

of the magnitudes of the primary component over all the time-frequency bins. 

Since the objective function in (4.16) is not convex, convex optimization 

techniques are inapplicable. Heuristic methods, like simulated annealing 

[LaA87], require optimization to be performed for all the phase variables, and 

hence might be inefficient in solving APES. Therefore, a more efficient method 

referred to as discrete searching (DS) to estimate ambient phase is proposed. DS 

is proposed based on the following two observations. First, the magnitude of the 

primary component at one time-frequency bin is solely determined by the phase 

of the ambient component at the same time-frequency bin and hence, the 

estimation in (4.16) can be independently performed for each time-frequency 

bin. Second, the phase variable is bounded to  ,    and high precision of 

the estimated phase may not be necessary. Thus, the optimal phase estimates 

can be selected from an array of discrete phase values    1
ˆ 2 ,d d D   

where  1,2, ,d D  with D being the total number of phase values to be 

considered. In general, the value of D affects the extraction and the 
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computational performance of APES using DS. Following (4.9) and (4.10), a 

total number of D estimates of the primary components can be computed. The 

estimated phase then corresponds to the minimum of magnitudes of the primary 

component, i.e.,  * *

1 1
ˆ ˆ ,d   where 

 
 *

1
1,2, ,

ˆarg min ,
d D

d P d


  Finally, the 

extracted primary and ambient components are computed using (4.10). It shall 

be noted that in DS, a sufficient condition of the sparsity constraint was 

employed in solving the APES problem in (4.16). The detailed steps of APES 

are listed in Table 4.1. 

In addition to the proposed APES, we also consider a simple way to 

estimate the ambient phase based on the uniform distribution, i.e., 

 11
ˆ , .U U θ    This approach is referred to as APEU, and is compared with 

the APES to examine the necessity of having a more accurate ambient phase 

estimation in the next section. Developing a complete probabilistic model to 

estimate the ambient phase, though desirable, is beyond the scope of the present 

study. 

4.2.2 Ambient magnitude estimation with a sparsity constraint 

Similarly to APES that is solved using the sparsity constraint, the ambient 

magnitude estimation problem can be expressed as: 

 
*

1
ˆ 1

ˆˆ arg min ,
r

r P  (4.17) 

where r̂  is the estimated ambient magnitude of all the time-frequency bins. As 

no constraints are placed on the ambient magnitude spectra among the 

time-frequency bins in one frame, the estimation of ambient magnitude can also 

be considered to be independent for every time-frequency bin. Therefore, the 
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estimation of ambient magnitude can be obtained individually for every 

time-frequency bin by minimizing the primary magnitude under the AMES 

framework. 

To derive the solution for AMES, we follow the geometric relation 

illustrated in Fig. 4.1. To ensure the existence of intersection point P, the 

following constraint 

 PC PB BC PB PC ,     (4.18) 

has to be satisfied, which leads to: 

  , ,lb ubr r r  (4.19) 

where 
BC BC

, , 1.
1 1

lb ubr r k
k k

   
 

When k = 1, there is no physical upper 

bound from (4.18). Based on the objective of minimizing the magnitude of 

primary component, we can actually enforce an approximate upper bound for k 

= 1, for example, let OB OC ,  1.ubr k     Thus, the ambient magnitude is 

bounded, and the same numerical method DS (as used in APES) is employed to 

estimate r in AMES. Consider an array of discrete ambient magnitude values 

Table 4.1 Steps in APES 

1. Transform the input signal into time-frequency domain X0, X1, pre-compute k, choose 

D, repeat steps 2-7 for every time-frequency bin 

2. Set d = 1, compute  1 0 ,X kX  θ  repeat steps 3-6 

3.  1
ˆ 2d d D     

4.      0 0 1
ˆ ˆ ˆCompute  using eq. (4.9), and ,d W d W d  

5.    1 1
ˆ ˆCompute  using eq. (4.10) and P d P d  

6. 1,d d  Until d D  

7. Find 
 

 *

1
1,2, ,

ˆ=arg min .
d D

d P d


repeat steps 3-5 with d = d
*
 and compute the other 

components using eq. (4.10) 

8. Finally, compute the time-domain primary and ambient components using inverse 

time-frequency transform. 
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 
1 1

ˆ 1 ,  
1 1

lb ub

d d
r d r r

D D

  
   

  
 where  1,2, ,d D with D being the total 

number of ambient magnitude estimates considered. For each magnitude 

estimate  ˆ ,r d  we select the one  Re Im
ˆ ˆP ,P  of two solutions from (4.14) 

which gives the smaller primary magnitude. First, we write the two solutions 

from (4.14) as: 

 

      

      

2 2

Re Re Im Im1 Re Re
Re 2

2 2

Im Im Re Re1 Im Im
Im 2

ˆC B 1 B CB C
P̂ ,

2 2 BC

ˆC B 1 B CB C
P̂ ,

2 2 BC

k r

k r





   
 

   
 

 (4.20) 

 

      

      

2 2

Re Re Im Im2 Re Re
Re 2

2 2

Im Im Re Re2 Im Im
Im 2

ˆC B 1 B CB C
P̂ ,

2 2 BC

ˆC B 1 B CB C
P̂ ,

2 2 BC

k r

k r





   
 

   
 

 (4.21) 

We compare the power of the primary components given by these two solutions 

as: 

 

           

    

    

 

2 2 2 2 2 2
1 2 1 1 2 2

Re Im Re Im

2 2

Re Re Im ImRe Re

2 2

2 2

Im Im Re ReIm Im

2 2

Re Im Im Re 2

ˆ ˆ ˆ ˆ ˆ ˆP - P = P P P P

ˆC B 1 B CB C
4

2 2 BC 2 BC

ˆC B 1 B CB C
4

2 2 BC 2 BC

2
B C -B C .

BC

k r

k r







         
       

 
    

 
  

 
    

 
  

 

 (4.22) 

By selecting the solution with smaller power, we arrive at 
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     
   

1 1

Re Im Re Im Im Re

Re Im
2 2

Re Im

ˆ ˆP ,P ,     B C -B C 0
ˆ ˆP ,P .

ˆ ˆP ,P ,     otherwise

 
 


 (4.23) 

Therefore, we can unify the solution for the selected  Re Im
ˆ ˆP ,P  from (4.14) 

based on the sign of  Re Im Im ReB C -B C , that is 

 

 
    

     

 
    

     

2 2

Re ReRe Re
Re 2

Im Im Re Im Im Re

2

2 2

Im ImIm Im
Im 2

Re Re Re Im Im Re

2

ˆC B 1B C
P̂

2 2 BC

B C sgn B C B C
,

2 BC

ˆC B 1B C
P̂

2 2 BC

B C sgn B C B C
,

2 BC

k r d
d

d

k r d
d

d





 
 

 


 
 

  


 (4.24) 

where sgn(x) is the sign of x. The estimated magnitude of the primary 

component is obtained as  

      2 2

1 Re Im
ˆ ˆ ˆP P ,P d d d   (4.25) 

The estimated ambient magnitude then corresponds to the minimum of the 

primary component magnitude, i.e.,  * *ˆ ˆ ,r r d  where 

 
 *

1
1,2, ,

ˆ=arg min .
d D

d P d


 Finally, the extracted primary and ambient 

components are computed using (4.15). 

4.2.3 Computational cost of APES and AMES 

In this subsection, we compare the computational cost of APES and AMES, as 

shown in Table 4.2. In general, both AMES and APES are quite computational 

extensive. AMES requires more operations which include square root, addition, 
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multiplication, and division, but requires no trigonometric operations. By 

contrast, APES requires 7D+6 times of trigonometric operations for every 

time-frequency bin. The computational efficiency of these two approaches is 

affected by the implementation of these operations. 

 

4.2.4 An approximate solution: APEX 

To obtain a more efficient approach for ambient spectrum estimation, we 

derive an approximate solution in this subsection. For every time-frequency bin, 

we can rewrite (4.1) for the two channels as: 

 

2 2 2 2 22 1

0 0 0 0 0 0 1 1 0

2 2 2 2 2

1 1 1 1 1 1 1 1 1

2 cos 2 cos ,  

2 cos 2 cos ,

PA PA

PA PA

X P A P A k P A k P A

X P A P A P A P A

 

 

      

     
(4.26) 

where 0 1,  PA PA   are the phase differences between the spectra of the primary 

and ambient components in channel 0 and 1, respectively. From (4.26), we can 

obtain that 

      2 2 22 1

1 1 0 1 1 01 2 cos cos 0.PA PAk P A k P X X         (4.27) 

Solving (4.27) for 
1 ,P we arrive at  

Table 4.2 Computational cost of APES, AMES and APEX (for every 

time-frequency bin) 

Operation 
Square 

root 
Addition Multiplication Division Comparison 

Trigonometric 

operation 

APES D 15D+18 15D+13 4D+6 D-1 7D+6 

AMES 2D+2 25D+35 24D+24 9D+13 D-1 0 

APEX 0 13 7 4 1 7 

D: number of phase or magnitude estimates in discrete searching 
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


  






  
  

 

 (4.28) 

From (4.28), when k > 1, the minimization of 
1P can be approximately 

achieved by minimizing 1

0 1cos cosPA PAk     (considering that 
2 2

1 0X X  

in most cases since 1k  ), which leads to 0 1,  0.PA PA     According to the 

relation between the two ambient phases in (4.9), we can infer that it is 

impossible to always achieve both 0PA   and 1 0PA  at the same time. 

Clearly, since 1,k   a better approximate solution would be taking 1 0.PA   

On the other hand, when k = 1, one approximate solution to minimize 
1P  

would be letting 0 1 .     These constraints can be applied in either APE or 

AME framework. Here, applying the constraints in APE is more 

straightforward and we shall obtain the approximate phase estimation as: 

 
 

1*

11

1 0

,              1
ˆ .

,  1

k

k

  
 

   

X
θ

X X
 (4.29) 

As the phase (or the phase difference) of the input signals is employed in 

(4.29), we refer to this approximate solution as APEX. As shown in Table 4.2, 

APEX requires the lowest computational cost and is significantly more efficient 

than either APES or AMES. The performance of these approaches will be 

evaluated in the following sections. 
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4.3 Performance measures 

An evaluation framework for PAE was initially proposed in [HTG14]. In 

general, we are concerned with the extraction accuracy and spatial accuracy in 

PAE. The overall extraction accuracy of PAE is quantified by error-to-signal 

ratio (ESR, in dB) of the extracted primary and ambient components, where 

lower ESR indicates better extraction of these components. The ESR for the 

primary and ambient components are computed as 

 

2
1

2
P 10 2

0
2

2
1

2
A 10 2

0
2

ˆ1
ESR 10log ,  

2

ˆ1
ESR 10log ,

2

c c

c c

c c

c c





  
  

  

  
  

  





p p

p

a a

a

 (4.30) 

where ,  and c cp a are the time-domain primary and ambient components of the 

whole signal, respectively. The extraction error can be further decomposed into 

three components, namely, the distortion, interference, and leakage (refer to 

Chapter 3 for the explanation of these three error components). Corresponding 

performance measures of these error components can be computed directly for 

PAE approaches with analytic solutions. As there is no analytic solution for 

these ASE approaches, we need to find alternative ways to compute these 

measures. In this section, we propose a novel optimization technique to 

estimate these performance measures.  

We consider the extracted primary component in time domain ˆ .cp  Since 

the true primary components in two channels are completely correlated, no 

interference is incurred [HTG14]. Thus we can express ˆ
cp as 

 ˆ ,
c cc c Leak Dist  p pp p  (4.31) 
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where the leakage is  ,0 0 ,1 1 ,
c Pc PcLeak w w p a a  and the distortion is .

c
Dist

p
 

To compute the measures, we need to estimate 
,0 ,1,Pc Pcw w  first. Considering 

that 0 1,  ,  and cp a a  are inter-uncorrelated, we propose the following way to 

estimate 
,0 ,1, ,Pc Pcw w  with  

  
 

 
,0 ,1

2
* *

,0 ,1 ,0 0 ,1 1
2,

ˆ, arg min ,
Pc Pc

Pc Pc c c Pc Pc
w w

w w w w   p p a a  (4.32) 

Thus, we can compute the measures, leakage-to-signal ratio (LSR) and 

distortion-to-signal ratio (DSR), for the primary components as 
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1
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
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  
  

  

    
  

 
 





a a

p
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 (4.33) 

Next, we express ˆ
ca  in a similar way, as 

 ˆ ,
c c cc c Leak Intf Dist   a a aa a  (4.34) 

where the leakage is
, ,

c Ac c cLeak wa p and the interference 
,1 1c Ac c cIntf w  

a
a

originates from the uncorrelated ambient component. The two weight 

parameters 
, ,1,Ac c Ac cw w 

can be estimated as 

  
 

 
, ,1

2
* *

, ,1 , ,1 1
2,

ˆ, arg min ,
Ac c Ac c

Ac c Ac c c c Ac c c Ac c c
w w

w w w w


     a a p a  (4.35) 

Thus, we compute the measures LSR, interference-to-signal ratio (ISR), and 

(DSR) for the ambient components as 
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 (4.36) 

Previous experience on evaluating linear estimation based PAE approaches 

such as PCA and least-squares suggests that these parameters 

,0 ,1 , ,1, , ,Pc Pc Ac c Ac cw w w w 
are bounded to [-1, 1], hence we can employ a simple 

numerical searching method similar to DS to determine the optimal estimates of 

these parameters using a certain precision [HTG14]. As audio signals from 

digital media are quite non-stationary, these measures shall be computed for 

every frame and can be averaged to obtain the overall performance for the 

whole track.  

On the other hand, spatial accuracy is measured using the inter-channel cues. 

For primary components, the accuracy of the sound localization is mainly 

evaluated using inter-channel time and level differences (i.e., ICTD and ICLD). 

In this chapter, there is no ICTD involved in the basic mixing model for stereo 

input signals, and the ICLD is essentially determined by the estimation of k, 

which is common between the proposed approaches and the existing linear 

estimation based approaches such as PCA [HTG14]. For these two reasons, 

spatial accuracy is not evaluated for primary component extraction, but is 

focused on the extraction of ambient components. The spatial accuracy of the 

ambient component is evaluated in terms of its diffuseness, as quantified by 

inter-channel cross-correlation coefficient (ICC, from 0 to 1) and the ICLD (in 
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dB). It is clear that a more diffuse ambient component requires both ICC and 

ICLD to be closer to 0. 

 

4.4 Experiments and discussions 

In this section, we present a comprehensive objective and subjective 

evaluation of the proposed ASE approaches and two existing PAE approaches, 

namely, PCA [GoJ07b], and time-frequency masking [MGJ07]. We present a 

preliminary experimental result on APES
1
, followed by the detailed results on 

ASE approaches
2
. To examine the robustness of these PAE approaches, we 

evaluate the proposed approaches using synthesized mixed signal with unequal 

ambient magnitude in two channels. Lastly, subjective listening tests were 

conducted to examine the perceptual timbre and spatial quality of different PAE 

approaches. 

4.4.1 Experimental results on APES 

Experiments using synthesized mixed signals were carried out to evaluate 

the proposed approach. One frame (consists of 4096 samples) of speech signal 

is selected as the primary component, which is amplitude panned to channel 1 

with a panning factor k = 4, 2, 1. A wave lapping sound recorded at the beach is 

selected as the ambient component, which is decorrelated using all-pass filters 

with random phase [Ken95b]. The stereo input signal is obtained by mixing the 

1
 The source code and demo tracks are available: 

http://jhe007.wix.com/main#!ambient-phase-estimation/cied 
2
 The source code and demo tracks are available: 

http://jhe007.wix.com/main#!ambient-spectrum-estimation/c6bk. 
 

http://jhe007.wix.com/main#!ambient-phase-estimation/cied
http://jhe007.wix.com/main%23!ambient-spectrum-estimation/c6bk.
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primary and ambient components using different values of primary power ratio 

ranging from 0 to 1 with an interval of 0.1.  

Our experiments compare the extraction performance of APES, APEU, 

PCA [GoJ07b], and two time-frequency masking approaches: Masking [MGJ07] 

and Masking_2 [AvJ04]. In the first three experiments, DS with D = 100 is used 

as the searching method of APES. Extraction performance is quantified by the 

error-to-signal ratio (ESR, in dB) of the extracted primary and ambient 

components. 

First, we examine the significance of ambient phase estimation by 

comparing the performance of APES with APEU. In Fig. 4.3, we show the 

mean phase estimation error and it is observed that compared to a random phase 

in APEU, the phase estimation error in APES is much lower. As a consequence, 

ESRs in APES are significantly lower than those in APEU, as shown in Fig. 4.4. 

This result indicates that obviously, close ambient phase estimation is 

 

Figure 4.3 Comparison of ambient phase estimation error between APES 

and APEU with (a) k = 4; (b) k = 2; and (c) k = 1. Legend in (a) applies to all 

the plots. 
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necessary. 

 Second, we compare the APES with some other PAE approaches in the 

literature. From Fig. 4.4, it is clear that APES significantly outperforms other 

approaches in terms of ESR for 0.8    and k ≠ 1, suggesting that a better 

extraction of primary and ambient components is found with APES when 

primary components is panned and ambient power is strong. When k = 1, APES 

has comparable performance to the masking approaches, and performs slightly 

better than PCA for 0.5.   Referring to Fig. 4.3 that the ambient phase 

estimation error is similar for different k values, we can infer that the relatively 

poorer performance of APES for k = 1 is an inherent limitation of APES. 

Moreover, we compute the mean ESR across all tested   and k values and find 

 

Figure 4.4 ESR of (a-c) extracted primary component and (d-f) extracted 

ambient component, with respect to 3 different values of primary panning 

factor (k = 4, 2, 1), using APES, APEU, PCA [GoJ07b], Masking [MGJ07], 

and Masking_2 [AvJ04]. Legend in (a) applies to all the plots. 
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that the average error reduction in APES over PCA and the two time-frequency 

masking approaches are 3.1, 3.5, and 5.2 dB, respectively. Clearly, the error 

reduction is even higher (up to 15 dB) for low   values.  

 Lastly, we compare the performance, as well as the computation time 

among different searching methods in APES: SA, DS with D = 10 and 100. The 

results with   = 0.5 and k = 4 are presented in Table 4.3. It is obvious that SA 

requires significantly longer computation time to achieve similar ESR when 

compared to DS. More interestingly, the performance of DS does not vary 

significantly as the precision of the search increases (i.e., D is larger). However, 

the computation time of APES increases almost proportionally as D increases. 

Hence, we infer that the proposed APES is not very sensitive to phase 

estimation errors and therefore the efficiency of APES can be improved by 

searching a limited number of phase values.  

4.4.2 Experimental results on ASE approaches 

In these experiments, the searching method of APES or AMES is DS with 

D = 100. Based on the performance measures introduced in Section 4.3, we 

shall compare the overall extraction error performance, the specific error 

performance including leakage, distortion, and interference, as well as the 

spatial accuracy of the ambient components. Additionally, we will also compare 

the efficiency of these PAE approaches in terms of the computation time based 

Table 4.3 Comparison of APES with different searching methods 

Method Computation time (s) ESRP (dB) ESRA (dB) 

DS (D=10) 0.18 -7.28 -7.23 

DS (D=100) 1.62 -7.58 -7.50 

SA 426 -7.59 -7.51 
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on our simulation. The stereo mixed signals employed in the experiments are 

synthesized in the following way. A frame (4096 samples, sampling rate: 44.1 

kHz) of speech signal is selected as the primary component, which is amplitude 

panned to channel 1 with a panning factor  1,  2,  4 .k  A wave lapping 

sound recorded at the beach is selected as the ambient component, which is 

decorrelated using all-pass filters with random phase [Ken95b]. The stereo 

signal is obtained by mixing the primary and ambient components based on 

different   values ranging from 0 to 1 with an interval of 0.1. 

In the first experiment, we compare the overall performance of the three 

ASE approaches with two other PAE approaches in the literature, namely, PCA 

[GoJ07b] and Masking [MGJ07]. For the proposed ASE approaches, FFT size 

is set as 4096, whereas for Masking, the best setting for FFT size is found as 64. 

 

Figure 4.5 Comparison of the ESR of (a-c) extracted primary components 

and (d-f) extracted ambient components, with respect to different k values, 

using APES, AMES, APEX, PCA [GoJ07b], and Masking [MGJ07].  
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The ESR of these approaches with respect to different values of    and k is 

illustrated in Fig. 4.5. Our observations of the ESR performance are as follows: 

1) Generally, the performance of all these PAE approaches varies with . As 

  increases, ESRP decreases while ESRA increases (except ESRA of PCA). 

Considering primary components to be more important in most applications, 

it becomes apparent that the two representative existing approaches cannot 

perform well when   is low. 

2) Primary panning factor k is the other factor that affects the ESR 

performance of these PAE approaches except PCA. For the Masking 

approach, the influence of k is insignificant for most cases except ESRP at 

very low   and ESRA at very high . By contrast, the ASE approaches are 

 

Figure 4.6 Comparison of the specific error performance of (a-b) LSR and 

DSR in the extracted primary components and (c-e) LSR, DSR, and ISR in 

the extracted ambient components using APES, AMES, APEX, PCA, and 

Masking. 
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more sensitive to k. The ESR of APES and AMES are lower at higher k, 

especially when   is high. For APEX, the performance varies between k > 

1, and k = 1, which was implied in (4.29). 

3) Irrespective of   and k, APES and AMES perform quite similar. Both 

APES and AMES outperform existing approaches at lower , i.e., from  < 

0.8 when k = {2, 4} to  < 0.5 when k = 1. APEX can be considered as an 

approximate solution to APES or AMES for k > 1, and when k = 1, it 

becomes identical to PCA (this can also be verified theoretically). 

In the second experiment, we look into the specific error performance of 

ASE approaches at k = 2. Note that there are some slight variations in these 

error measures for close   values, which is due to the inaccuracy in the 

estimation of specific error components. Nevertheless, we can observe the 

 

Figure 4.7 Comparison of the diffuseness of the extracted ambient 

components in terms of (a)-(c) ICC and (d)-(f) ICLD using APES, AMES, 

APEX, PCA, and Masking. 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Primary power ratio 

IC
C

(a) k = 4

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Primary power ratio 

IC
C

(b) k = 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Primary power ratio 

IC
C

(c) k = 1

0 0.2 0.4 0.6 0.8 1
-25

-20

-15

-10

-5

0

5

Primary power ratio 

IC
L
D

(d) k = 4

 

 

0 0.2 0.4 0.6 0.8 1
-15

-10

-5

0

5

Primary power ratio 

IC
L
D

(e) k = 2

0 0.2 0.4 0.6 0.8 1
-5

0

5

Primary power ratio 

IC
L
D

(f) k = 1

True

APES

AMES

APEX

PCA

Masking



108 

 

following trends. As shown in Fig. 4.6(a) and 4.6(b), we found that the 

performance improvement of ASE approaches in extracting primary  

components lies in the reduction of the ambient leakage, though at the cost of 

introducing more distortion. For ambient component extraction, PCA and 

Masking yield the least amount of leakage and interference, respectively. Note 

that the little amount of leakage in PCA and interference in Masking are 

actually due to the estimation error, since none of them theoretically exist in the 

extracted ambient components. Nevertheless, the ASE approaches yields 

moderate amount of these errors, which results in a better overall performance. 

 In the third experiment, we examine the spatial accuracy of PAE in terms 

of the diffuseness of the extracted ambient components. As shown in Fig. 

4.7(a)-(c), the lowest and highest ICC are achieved with true ambient 

components and ambient components extracted by PCA, respectively. The ASE 

approaches outperform the existing approaches, and are more effective in 

extracting diffuse ambient components at higher k and lower . For ICLD of the 

extracted ambient components as shown in Fig. 4.7(d)-(f), we observed that all 

approaches extract ambient components with equal level between the two 

channels, whereas PCA works only for k = 1. 

In the fourth experiment, we compare the extraction performance as well as 

the computation time among these PAE approaches. The simulation was carried 

out on a PC with i5-2400 CPU, 8 GB RAM, 64-bit windows 7 operating system 

and 64-bit MATLAB 7.11.0. Though MATLAB simulations do not provide 

precise computation time measurement compared to the actual implementation, 

we could still obtain the relative computation performance among the PAE 

approaches. The results of computation time averaged across all the  and k 
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values are summarized in Table 4.4. It is obvious that the three ASE approaches 

perform better than PCA and Masking on the average. But when we compare 

the computation time among APES, AMES, and APEX, we found that AMES 

is around 20x faster than APES, but is still far away from the computation time 

of the existing approaches. The APEX, which estimates the ambient phase 

directly using the phase of the input signals, is over 40x faster as compared to 

AMES and has similar computational performance as the Masking approach, 

and hence can be considered as a good alternative ASE approach for PAE. 

Furthermore, in order to achieve real-time performance (in frame-based 

processing), the processing time must be less than 4096/44.1 = 92.88 (ms). It is 

clear that APEX, together with PCA and Masking satisfies this real-time 

constraint. 

4.4.3 Experimental results on robustness of ASE approaches 

To investigate the robustness of the proposed ASE approaches, we conduct 

experiments with the input signals containing unequal ambient magnitudes in 

the two channels. To quantify the violation of the assumption of equal ambient 

Table 4.4 Average ESR, ICC, and computation time of PAE approaches 

Method APES AMES APEX 
PCA 

[GoJ07b] 

Masking 

[MGJ07] 

ESRP (dB) -6.73 -6.31 -6.25 -3.02 -1.57 

ESRA (dB) -6.73 -6.31 -6.25 -3.02 -2.77 

ICC of ambient 

components 
0.19 0.22 0.42 1 0.40 

Computation time (ms) 3921.8 217.1 4.8 0.06 5.0 
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magnitude, we introduce an inter-channel variation factor v that denotes the 

range of variation of the ambient magnitude in one channel as compared to the 

other channel. Let us denote the ambient magnitude in the two channels as 

0 1, .r r  The variation of ambient magnitude is expressed as 

   10 1 010log    dB .v r r   In the ideal case, we always have 0.v   To allow 

variation, we consider v as a random variable with mean equal to 0, and 

variance as 2.  In this experiment, we consider two types of distributions for 

the variation, namely, normal distribution and uniform distribution, and 

examine the performance of these PAE approaches with respect to different 

variance of variations, i.e.,  2 0, 10 ,    at 0.5,   and k = 2. We run the 

experiment 10 times and illustrate the averaged performance in terms of ESR 

and ICC in Figs. 4.8 and 4.9. We observed that as the variance of the variation 

increases, the ESR performance of proposed ASE approaches becomes worse, 

though ICC was not affected much. The ASE approaches are more robust to 

 

Figure 4.8 Comparison of the performance of PAE approaches in the 

presence of normally distributed variations in the ambient magnitudes in two 

channels (with 0.5,   k = 2): (a) ESRP, (b) ESRA, (c) ICC of ambient 

components. 
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ambient magnitude variations under normal distribution compared to uniform 

distribution. Compared to PCA and Masking, the proposed approaches are still 

better with the variance of variation up to 10 dB. Therefore, we conclude that 

the three ASE approaches are in general robust to ambient magnitude 

variations.  

4.4.4 Experimental results on subjective listening tests 

Lastly, subjective tests were carried out to evaluate the perceptual 

performance of these PAE approaches. A total of 17 subjects (15 males and two 

females), who were all between 20-30 years old, participated in the listening 

tests. None of the subjects reported any hearing issues. The tests were 

conducted in a quiet listening room at Nanyang Technological University, 

Singapore. An Audio Technica MTH-A30 headphone was used. The stimuli 

used in this test were synthesized using amplitude panned (k = 2) primary 

 

Figure 4.9 Comparison of the performance of PAE approaches in the 

presence of uniformly distributed variations in the ambient magnitudes in 

two channels (with 0.5,   k = 2): (a) ESRP, (b) ESRA, (c) ICC of ambient 

components. 
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components (speech, music, and bee sound) and decorrelated ambient 

components (forest, canteen, and waterfall sound) based on two values of 

primary power ratio ( 0.3,  0.7  ) for the duration of 2 to 4 seconds. Both the 

extraction accuracy and spatial accuracy were examined. The testing procedure 

was based on MUSHRA [ITU03b], [LNZ14], where a more specific anchor (i.e., 

the mixture) is used instead of the low-passed anchor, according to recent 

revision of MUSHRA as discussed in [LNZ14]. The MATLAB GUI was 

modified based on the one used in [EVH11]. Subjects were asked to listen to 

the clean reference stimuli and processed stimuli obtained from different PAE 

approaches, and give a score of 0-100 as the response, where 0-20, 21-40, 41-60, 

61-80, and 81-100 represent a bad, poor, fair, good, and excellent quality, 

respectively. Finally, we analyzed the subjects’ responses for the hidden 

reference (clean primary or ambient components), mixture, and three PAE 

approaches, namely, Masking [MGJ07], PCA [GoJ07b], and APEX. Note that 

APEX is selected as the representative of ASE approaches because APES and 

AMES exhibit very similar extraction results. For each PAE approach, we 

combine the subjective scores of different test stimuli and different values of 

primary power ratio, so as to represent the overall performance of these PAE 

approaches. According to [ITU14], we conducted the post-screening to detect 

the outliers by excluding the scores of the subject who rates the hidden 

reference lower than 90. The mean subjective score with 95% confidence 

interval of the extraction and spatial accuracy for the tested PAE approaches are 

illustrated in Figs. 4.10. Despite the relatively large variations among the 

subjective scores that are probably due to the different scales employed by the 

subjects and the differences among the stimuli, we observe the following trends. 
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On one hand, we observed that APEX outperforms the other PAE approaches in 

extracting accurate primary components, as shown in Fig. 4.10(a). In Fig. 

4.10(b), APEX, though slightly worse off than PCA, still produces considerable 

accuracy in ambient extraction. The good perceptual performance of ambient 

components extracted from PCA lies in the very low amount of primary leakage, 

as shown in Fig. 4.6(c). On the other hand, we found that the spatial 

performance were also affected by the undesired leakage signals as compared to 

the clean reference, as found in the mixtures, which preserve the same spatial 

quality as the reference, but were rated lower than the reference. With respect to 

the diffuseness of the ambient components, APEX performs the best, whereas 

PCA performs poorly. We find that PCA sacrifices on the diffuseness of the 

extracted ambient components for the sake of a better perceptual extraction 

performance. A further analysis of the ANOVA results shows that the p-values 

between the APEX and Masking, PCA are extremely small, which reveals that 

the differences among the performance of these PAE approaches are significant. 

To sum up the subjective evaluation results, the proposed ASE approaches yield 

 

Figure 4.10 Subjective performance (mean with 95% confidence interval) 

for (a) the extraction accuracy of primary components, (b) the extraction 

accuracy of ambient components, and (c) diffuseness accuracy of ambient 

components. 
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the best performance in terms of extraction and spatial accuracy, which is 

consistent with our objective evaluation results. 

 

4.5 Conclusions 

In this chapter, we presented a novel formulation of the PAE problem in the 

time-frequency domain. By taking advantage of equal magnitude of ambient 

component in two channels, the PAE problem is reformulated as an ambient 

spectrum estimation problem. The ASE framework can be considered in two 

ways, namely, ambient phase estimation, and ambient magnitude estimation. 

The novel ASE formulation provides a promising way to solve PAE in the 

sense that the optimal solution leads to perfect primary and ambient extraction, 

which is unachievable with existing PAE approaches. In this chapter, ASE is 

solved based on the sparsity of the primary components, resulting in two 

approaches, APES and AMES. To thoroughly evaluate the performance of 

extraction error, we proposed an optimization method to compute the leakage, 

distortion and interference of the extraction error for PAE approaches without 

analytical solutions.  

Based on our experiments, we observed significant performance 

improvement of the proposed approaches over existing approaches. The 

improvement on error reduction is around 3-6 dB on average and up to 10-20 

dB for lower  , which is mainly due to the lower residual error from the 

uncorrelated ambient components. Moreover, the ASE approaches perform 

better for mixed signals having heavily panned primary components (e.g., k = 4) 

than those having slightly panned primary components (e.g., k = 1). In terms of 
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the spatial accuracy, the ASE approaches extract more diffuse ambient 

components. With respect to the computational efficiency of APES and AMES, 

the value of D is an important factor, where the efficiency of these two ASE 

approaches can be improved by lowering the precision of the phase/magnitude 

estimation, without introducing significant degradation on the extraction 

performance. Furthermore, we found that AMES is an order of magnitude faster 

than APES under the same setting in MATLAB simulation, but is still not as 

efficient as existing approaches. For this purpose, we have also derived an 

approximate solution APEX and verified its effectiveness, as well as its 

efficiency in our simulation. Besides the ideal situation where the ambient 

magnitudes are equal in two channels, the robustness of these ASE approaches 

was also examined by introducing statistical variations to the ambient 

magnitudes in the two channels of the stereo signal. It was found that the 

proposed approaches can still yield better results with the variance of variations 

up to 10 dB. The objective performance of the proposed ASE approaches was 

also validated in our subjective tests. In the next two chapters, we will study 

PAE that deals with more complex signals. 
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Chapter 5 

Time-Shifting based Primary Ambient 

Extraction 

 

In practice, PAE is usually applied to the input signals without any prior 

information. To achieve better extraction of the primary and ambient 

components, PAE requires the signal model to match the input signal more 

closely. As presented in the previous two chapters, most work focus on the 

ideal case. To date, little work has been reported to deal with input signals that 

do not fulfill all the assumptions of the stereo signal model. In [UsB07], a 

normalized least-mean-square approach was proposed to address the problem in 

extracting the reverberation from stereo microphone recordings. Härmä [Har11] 

tried to improve the performance of PAE by classifying the time-frequency 

regions of the stereo signal into six classes. Thompson et al. [TSW12] 

introduced a primary extraction approach that estimates the magnitude and 

phase of the primary component from a multichannel signal by using a linear 

system of the pairwise correlations. The latter approach requires at least three 

channels of the input signal and is not applicable to stereo input signals. 

This chapter
1
 focuses on PAE that deals with real-world stereo input signals 

that may not fit the typical PAE signal model. In Section 5.1, we discuss the 

1
 The work reported in this chapter is an extension from the author’s conference paper 

[HTG13] presented at ICASSP 2013, and Journal paper [HGT15c] published in IEEE/ACM 

Transactions on Audio, Speech, and Language Processing, October 2015 issue. 
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complex cases of real-world signals and identified one of the most frequently 

occurring cases, known as the primary-complex case. The performance analysis 

of PCA based PAE in the primary-complex case is presented in Section 5.2. 

The proposed SPCA based PAE to address the problem in the primary-complex 

case is discussed in Section 5.3. Section 5.4 presents our comparative 

evaluation on the performance of PCA and SPCA based PAE using four 

experiments. Finally, we conclude this chapter in Section 5.5. 

 

5.1 Complex cases in PAE 

Referring to the stereo signal model discussed in Section 3.1, we shall recall 

that there are three key assumptions. In practice, none of these three 

assumptions can be satisfied completely. By relaxing any one of them, we can 

come up with one complex case. As seen in stereo microphone recordings, 

movies, and gaming tracks, the primary components in stereo signals can be 

amplitude panned and time-shifted. In addition, spectral differences can be 

found in the primary components that are obtained using binaural recording or 

binaural synthesis based on head-related transfer functions (HRTFs) [Beg00]. 

We shall classify this type of stereo signals as the primary-complex signals. The 

primary components in the primary-complex signals usually exhibit partial 

correlation at zero lag. Other types of complex stereo signals, such as those 

involving (partially) correlated ambient components, are less common, and 

hence are not considered in this chapter.   

Therefore, we shall focus our study of PAE on two cases, namely, the ideal 

and primary-complex cases, where the primary components are completely 
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correlated and partially correlated at zero lag, respectively. The performance of 

PAE is quantified by the measures of extraction accuracy and spatial accuracy. 

Performance degradation due to the mismatch of the input signal with the stereo 

signal model and the proposed solution to deal with this mismatch is studied 

extensively in this chapter. PCA is taken as a representative PAE approach in 

our study. More in-depth analysis on the performance of PCA based PAE is 

conducted for the extraction of both the primary and ambient components. In 

the primary-complex case, the performance degradation of PCA based PAE 

with respect to the value of primary correlation is discussed, and we find the 

main cause of low primary correlation and the consequent performance 

degradation to be the time difference of the primary component. Hence, we 

propose a time-shifting technique to deal with PAE in the primary-complex 

case. The time-shifting technique is incorporated into PCA based PAE, 

resulting in a new approach referred to as the time-shifted PCA (SPCA). A new 

overlapped output mapping method has also been proposed to avoid the 

switching artifacts caused by time-shifting. To validate the advantages of the 

proposed time-shifting technique and verify the improved performance of the 

proposed approach over conventional approaches more comprehensively, four 

experiments have been conducted using more realistic test signals. It shall be 

noted that the proposed time-shifting technique, though studied with PCA in 

this chapter, can be incorporated into any other PAE approaches that are 

derived based on the stereo signal model. 
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5.2 Performance of conventional PAE in the 

primary-complex case 

In practice, it is unlikely for any stereo input signals to fulfill all the 

assumptions stated in Section 3.1. Several non-ideal cases can be defined by 

relaxing one or more of the assumptions of the stereo signal model. In this 

chapter, we focus our discussions on one commonly occurring non-ideal case, 

referred to as the primary-complex case, which defines a partially correlated 

primary component at zero lag. To investigate the performance of PCA based 

PAE in the primary-complex case, we shall examine the estimation of k and   

first, and then evaluate the performance in terms of extraction accuracy and 

spatial accuracy. 

Considering a stereo signal having a partially correlated primary component 

at zero lag, the first assumption of the stereo signal model, as stated in (3.3), is 

allowed to be relaxed to  
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0 1
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0 0 1 1

0 1,
T
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

 
 
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p p

p p p p

 (5.1) 

where P  is the correlation coefficient of the primary component at zero lag 

(primary correlation for short), and the rest of the assumptions in (3.3) and (3.4) 

remain unchanged. Here, only the positive primary correlation is considered, 

since the negatively correlated primary component can be converted into 

positive by simply multiplying the primary component in either channel by -1. 

In the primary-complex case, the correlations of the input signals at zero lag are 

computed as: 

    
0 0 0 0 0

2

00 11 01 P,  ,  .r N P P r N k P P r N kP    
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 (5.2) 
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Hence, the estimated k and   are: 
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where the subscript “pc” stands for “the primary-complex case”. Clearly, 

accurate estimation of k and   in the primary-complex case requires the 

additional knowledge about the primary correlation P .  However, this primary 

correlation is usually unavailable as only the mixed signal is given as input. In 

PCA based PAE, the estimates of k and   for the ideal case, given in 

(3.8)-(3.9), are usually employed. In this section, these two solutions are 

re-expressed as ˆ
ick , îc , where the subscript “ic” stands for “ideal case”. To 

see how accurate these ideal case estimates are, we substitute (5.2) into (3.8) 

and (3.9), and compute the ratio between the estimated k and true k, and the 

ratio between estimated   and true   as 
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Using (5.5) and (5.6), the ratios of the k and  in the primary-complex case 

with respect to the primary correlation are plotted in Fig. 5.1. It is clear that k is 

only correctly estimated (i.e.,  = 0 dBk ) when it equals one; and the 

estimation of   is more accurate (i.e.,  closer to 1) as k increases. The 

estimations of k and   become less accurate as the primary correlation 
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decreases from one to zero. The inaccuracy in the estimates of k and   results 

in an incorrect ICLD of the extracted primary components and hence degrades 

the extraction performance. 

Next, we analyze the extraction performance of PCA based PAE in the 

primary-complex case. First, we rewrite (3.28)-(3.29) using the true primary 

and ambient components: 
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Figure 5.1 Estimation of (a) primary panning factor k, and (b) primary power 

ratio   in the primary-complex case with varying P .  The estimations are 

more accurate when ∆k and   are closer to 0 dB and 1, respectively. 
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where  0 12

ˆ
ˆ

ˆ1

ic
ic

ic

k
k

k
 


v p p  is the interference signal decomposed from the 

input primary components 0 1,  and .p p  As compared to the ideal case (where

v 0 ), this interference v  introduces additional extraction error in the 

primary-complex case. 

To evaluate the PAE performance, two groups of performance measures 

quantifying the extraction accuracy and spatial accuracy are introduced in 

Chapter 3. The extraction accuracy is usually quantified by the extraction error, 

which is given by the error-to-signal ratio (ESR) and is computed as: 
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Smaller value of ESR indicates a better extraction. 

In the second group of measures, we consider the spatial accuracy by 

comparing the inter-channel relations of the extracted primary and ambient 

components with those of the true components. Due to the differences in the 

spatial characteristics of the primary and ambient components, we shall 

evaluate these components separately. For the primary components, there are 

three widely used spatial cues, namely, ICC, ICTD, and ICLD. The accuracy of 

these cues can be used to evaluate the sound localization accuracy of the 

extracted primary components [Rum01], [RVE10]. There has been extensive 

research in ICTD estimation after the coincidence model proposed by Jeffress 

(see [Jef48], [Yos93], [JSY98], [KaN14] and references therein). Based on the 

Jeffress model [Jef48], the ICC of different time lags is calculated and the lag 

number that corresponds to the maximum ICC is determined as the estimated 
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ICTD. ICLD is obtained by taking the ratio of the signal power between the 

channels 1 and 0. For the extracted ambient components, we evaluate the 

diffuseness of these components using ICC and ICLD [SWB06]. Since the 

ambient component is uncorrelated and relatively balanced in the two channels 

of the stereo signal, a better extraction of the ambient component is achieved 

when ICC and ICLD of the ambient component is closer to zero and one, 

respectively.  

 In Table 5.1, we summarize the results of the performance measures for 

the extracted primary and ambient components when PCA based PAE is 

applied in the primary-complex (i.e., P 1 ) and ideal cases (i.e., P 1  ). To 

illustrate how the extraction accuracy is influenced by P ,  the results of ESR 

using  0.2,  0.5,  0.8  and k = 3, are plotted in Fig. 5.2. It is clear that ESR 

is affected by the primary correlation P .  As shown in Fig. 5.2(a), the error of 

the extracted primary component decreases as P  approaches one, except for γ 

= 0.2. This exceptional case arises when γ is low, and the ambient leakage in the 

Table 5.1 Performance of PCA based PAE in the primary-complex case. 

Measures ESR 

Primary component 
 

 
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Measures ICLD ICC ICTD 

Primary component 2ˆ
ick  1 0 

Ambient component 2ˆ
ick   1 Not applicable 
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extracted primary component becomes the main contributor for the extraction 

error. From Fig. 5.1(a), we notice that as P  increases, k  decreases, which 

leads to the decrease of ˆ
ick k k  ; and hence the contributor from the ambient 

leakage in ESRP (i.e., 

2 2
2

2

1
1

ˆ 41ic

k k
k

k




  
    




) increases, which finally leads to 

the increase of ESRP for γ = 0.2. For the ESR of the extracted ambient 

component (ESRA) as illustrated in Fig. 5.2(b), we observed that ESRA 

decreases gradually as P  increases, which leads to an extracted ambient 

component having less error. Based on these observations, we find that 

1) In the ideal case, where P 1,  the primary and ambient components 

are extracted with relatively less error. 

2) In the primary-complex case, the error of the primary and ambient 

components extracted in PCA based PAE generally increases for most 

values of γ as P  decreases. 

3) It is also found in Table 5.1 that ICC and ICTD in the primary 

component are always one and zero, respectively. These values imply 

that the ICTD of the primary component is completely lost after the 

extraction. The correct ICLD of the primary component can only be 

obtained when k is accurately estimated. 

From the above observations, it is concluded that the performance of PCA 

based PAE is degraded by the partially correlated primary components of the 

stereo signal in the primary-complex case. The degraded performance, as 

observed in PCA, actually originates from the inaccurate estimations of k and 

.  As found in Chapter 3, the linear estimation based PAE approaches are 
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determined by these two parameters. Hence, it can be inferred that these linear 

estimation based PAE approaches as well as other PAE approaches that are 

derived based on the basic stereo signal model will encounter a similar 

performance degradation when dealing with stereo signals having partially 

correlated primary components. 

 

5.3 Time-shifting technique applied in PAE 

In the audio of moving pictures and video games, it is commonly observed 

that the primary components are amplitude panned and/or time-shifted [Wik13], 

[SWR13], where the latter leads to low correlation of the primary components 

at zero lag. As mentioned in the previous section, PCA based PAE dealing with 

such primary-complex signals leads to significant extraction error. Furthermore, 

 

Figure 5.2 ESR of (a) primary extraction and (b) ambient extraction using 

PCA based PAE in the primary-complex case with varying P  according to 

the results in Table 5.1. Legend in (a) applies to both plots. 
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the ICTD of the primary component is completely lost after the extraction. To 

overcome these issues, we propose a time-shifting technique to be incorporated 

into PCA based PAE, which results in the proposed approach, namely, the 

time-shifted PCA (SPCA) based PAE. The proposed approach aims to retain 

the ICTD in the extracted primary component and time-shifts the primary 

components to increase the primary correlation, thereby enhancing the 

performance of PAE.  

 The block diagram of the proposed SPCA based PAE is shown in Fig. 5.3. 

In SPCA based PAE, the stereo input signal is first time-shifted according to the 

estimated ICTD of the primary component. Subsequently, PCA is applied to the 

shifted signal and extracts primary and ambient components at shifted positions. 

Finally, the time indices of extracted primary and ambient components are 

mapped to their original positions using the same ICTD. Let o  denotes the 

estimated ICTD, the final output for the nth sample in the extracted components 

can be expressed as  
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Figure 5.3 Block diagram of SPCA based PAE. 
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It can be seen that the proposed approach is related to delayed-and-sum 

beamformer [VaB88] in the sense that each extracted component is a weighted 

sum of the input signals but with a delay or advance being applied in either 

channel. When ICTD 0,o   the proposed SPCA based PAE reduces to the 

conventional PCA based PAE. 

As mentioned in previous section, estimation of ICTD can be obtained 

using various approaches. In this chapter, we apply the Jeffress model [Jef48], 

which estimates the ICTD of the primary component using the maximum ICC 

of the primary component at various lags  P .   When only the stereo signal 

is available, we cannot compute the ICC of the primary component directly. 

Instead, the ICC of the stereo input signal  x   is used to estimate the ICTD 

of the primary component. Due to the uncorrelated ambient component of the 

stereo signal, which remains uncorrelated after the stereo signal is time-shifted, 

we find that for each lag ,  

    P ,x g     (5.12) 

where 0 1

0 1

P P
g

P P


p p

x x

 is lag-invariant. Therefore, the ICTD

   Parg max arg max .o x 
 

      A detailed study on the estimation of 

ICTD based on ICC in complex situations is discussed in [FaM04]. Due to the 

effect of summing localization, the maximum number of lags considered for 

ICC and ICTD in spatial audio is usually limited to ±1 ms [Bla97]. The positive 
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and negative values of ICTD account for the primary components that are 

panned to the directions of channel 0 and channel 1 in the auditory scene, 

respectively. As compared to the conventional PCA based PAE, the estimation 

of ICTD is one critical additional step, which inevitably incurs more 

calculations. More specifically, in the conventional PCA, the cross-correlations 

(i.e.,  0x ) is only computed once. By contrast, the proposed SPCA requires a 

total of 89 times of cross-correlations (i.e.,    ,  44,44 ,x     at a 

sampling rate fs = 44.1 kHz). One way to reduce the additional computation 

load is to increase the sample step size in ICTD estimation. For instance, 

computing only the cross-correlations with odd (or even) indices can reduce the 

additional computation load by half, at the cost of reducing the resolution of 

ICTD estimation. 

The time-shifting operation is achieved by keeping the signal in channel 0 

unchanged but delaying (or advancing) the signal in channel 1 by a duration 

equal to ICTD when ICTD ≤ 0 (or ICTD > 0). When the amounts of shifts in 

two successive frames are not the same, a proper mapping strategy is required 

to shift back the primary and ambient components that are extracted from the 

shifted signal to the original positions. To show how the change of ICTD 

affects the final output mapping, we consider two extreme cases, as illustrated 

in Fig. 5.4. The table in the top middle of Fig. 5.4 shows the ICTDs of three 

successive frames considered for these two cases. In the first case, we consider 

maximum ICTD decrease, i.e., the ICTD of frame i-1 is 1 ms, which is 

decreased to -1 ms in frame i. In the second case, we consider maximum ICTD 

increase, that is, as compared to the frame i, the ICTD of frame i+1 is increased 

to 1 ms. Consequently, the decrease and increase of ICTDs in these two cases 
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lead to a 2 ms overlap and gap in channel 1 between these frames, respectively, 

as shown in Fig. 5.4(a). To generalize these two extreme cases, let us consider 

the change of ICTD in two successive frames as      1 .o o oi i i       

Hence, we have 
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(5.13) 

To retain the ICTD, a straightforward mapping method is to set the 

amplitude of the samples of the gap to zero and averaging the overlapped 

samples in a cross-fading manner. However, it can be easily understood and 

also revealed in our informal listening tests that perceivable switching artifacts 

are introduced by the gaps. This is because the gaps are not caused by the 

silence of the primary components, but are artificially created as a result of the 

increased ICTD. 

To avoid the switching artifacts, all successive frames should be overlapped 

such that no gap between the frames can be found even when the ICTD increase 

reaches its maximum. The proposed overlapped output mapping strategy is 

depicted in Fig. 5.4(b). Let the duration of the overlapping samples in the stereo 

signals be Q ms. As compared to the conventional output mapping in Fig. 5.4(a), 

different amount of overlapping samples are found in both channels in Fig. 

5.4(b). In channel 0, exact Q ms between each two frames is overlapped, while 

in channel 1, the duration of overlapping samples varies from frame to frame 

according to the change in the ICTDs. That is, 
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 3

Samples between the two frames of the extracted components in channel 1 

= overlap of Q*10 *fs- .o i 
 

(5.14) 

To correspond to the two extreme cases, the duration of overlapping 

samples in channel 1 would be from Q-2 ms to Q+2 ms. In order to ensure no 

gap is found between any two successive frames, the duration of overlapping 

samples must be equal to or greater than 2 ms, i.e., Q ≥ 2 ms. As shown in Fig. 

5.4(b), where Q is chosen as the lowest value, i.e., Q = 2 ms, we find that even 

in the extreme case of maximum ICTD increase from frame i to frame i+1, 

there is no gap in channel 1. Therefore, no matter how much the ICTD changes, 

all frames can be handled appropriately without gap artifacts. Increasing Q 

 

Figure 5.4 An illustration of two output mapping strategies in the extreme 

cases: (a) conventional; (b) overlapped. The two channels 0 and 1 are depicted 

in white and grey, respectively. The table in the top middle shows the ICTDs 

for three successive frames. The value of Q in this example is selected as 2 

ms. 
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would also smoothen the extracted components, especially when the direction 

of the primary components changes rapidly. It is noted from (5.14) that the 

actual overlapping samples in different frames and channels can be varying. 

Thus, the cross-fading technique is required to adapt to these variations of the 

overlapping samples. 

Based on the above discussions, we shall see that the proposed time-shifting 

and overlapped output mapping techniques work independently from PCA. 

Therefore, the same time-shifting and output mapping technique in the 

proposed SPCA can be applied seamlessly to improve the performance of many 

other existing PAE approaches, including time-frequency masking [AvJ04], 

PCA based approaches [God08], [JHS10], [BJP12], and other linear estimation 

based PAE approaches as discussed in Chapter 3, as well as ambient spectrum 

estimation based approaches as discussed in Chapter 4. However, it shall be 

noted that the ICTD estimation and time-shifting operations would incur 

additional computation and memory cost. 

 

 

 

Table 5.2 Specifications of the four experiments 

# Input signal Primary component Ambient component Settings 

1 Synthesized Speech Lapping wave 
Fixed direction; 

different values of   

2 Synthesized Shaking matchbox Lapping wave 
Panning directions with 

close   

3 Synthesized 
Direct path of 

speech 

Reverberation of 

speech 

Varying directions with 

different   

4 Recorded Speech Canteen sound 
Three directions with 

close   
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5.4 Experiments and discussions 

To validate the performance of the proposed SPCA based PAE, a number of 

experiments
1
 were conducted. As the focus of this chapter is to examine PAE 

with partially correlated primary components, we shall consider only one 

dominant source in the primary component of the stereo signal. Experimental 

results for PAE with time-shifting on multiple dominant sources can be found 

in Chapter 6. In this section, we present the results from four different 

experiments. To perform an accurate comparative analysis between PCA and 

SPCA, we manually synthesized directional signals and mixed them with 

ambient signals in the first two experiments. The first and second experiments 

considered static and moving primary component, respectively. In the first 

experiment, we compared the extraction performance of PCA and SPCA with 

respect to .  While the direction of the primary component was fixed in the 

first experiment, the second experiment examined the estimation of the panning 

directions of the primary components using PCA and SPCA with   being 

close across the frames. The third experiment evaluated how PCA and SPCA 

perform when dealing with reverberation type of ambient components. To 

evaluate these two PAE approaches in a more realistic scenario, the fourth 

experiment was conducted using recorded signals of primary and ambient 

sound tracks that were played back over loudspeakers around a dummy head. 

Detailed specifications of the four experiments are given in Table 5.2.  

1
 The source code and demo tracks are available: 

http://jhe007.wix.com/main#!research/c24xx 
 

http://jhe007.wix.com/main#!research/c24xx
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5.4.1 Experiment 1: fixed direction 

In the first experiment, a speech clip was selected as the primary component, 

which is amplitude panned by k = 3 and time-shifted by 40o  samples at a 

sampling rate of 44.1 kHz, both correspond to the direction of channel 1. The 

ambient component was taken from a stereo recording of lapping wave with 

low correlation (less than 0.1) and close to unity power ratio between the two 

channels. Subsequently, the primary and ambient components were linearly 

mixed based on the values of   ranging from 0 to 1. Finally, the extraction 

performance of PCA and SPCA was evaluated using the performance measures 

introduced in Section 5.2. Note that the correlation coefficient of the tested 

primary component at zero lag is 0.17, which is increased to one after 

time-shifting the synthesized signal by 40 samples according to the estimated 

ICTD. The unity correlation implies that the primary component is completely 

correlated in SPCA. 

 

Figure 5.5 Comparison of the estimation of (a) k and (b)   between PCA 

and SPCA based PAE in the primary-complex case. 
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The results of the performance measures of PCA and SPCA are shown in 

Figs. 5.5-5.7. In Fig. 5.5, there are significant errors in the estimations of k and 

 in PCA, which are estimated more accurately in SPCA. Fig. 5.6 summarizes 

the ESR of PAE using PCA and SPCA. For primary extraction as shown in Fig. 

5.6(a), significant reduction (more than 50%) of ESR is obtained using SPCA 

when 0.5  . Based on Fig. 5.6(b), SPCA extracts the ambient components 

with smaller ESR than PCA, especially when   is high (more than 50% 

reduction for 0.8 ). The significant improvement lies in the reduction of the 

leakage from the primary components in the extracted ambient component. 

SPCA also outperforms PCA in terms of spatial accuracy of the extracted 

primary and ambient component. As shown in Fig. 5.7(a), the ICTD of the 

primary component extracted by SPCA is closer to the ICTD of the true 

primary component for 0.3.  When the primary components become too 

weak in the stereo signals, the estimation of ICTD in SPCA is less accurate. For 

 

Figure 5.6 ESR of (a) primary extraction and (b) ambient extraction using 

PCA and SPCA in the primary-complex case. Legend in (a) applies to both 

plots. 
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the ICLD whose just-noticeable difference (JND) is generally below 3 dB  

[Fal06b], we found that the ICLD of the primary component extracted by SPCA 

is significantly closer to the ICLD of the true primary component, as shown in 

Fig. 5.7(b). Therefore, the directions of the primary components extracted by 

SPCA would be more accurately reproduced and localized. For ambient 

extraction, we observed that the ICLD of the extracted ambient component for 

SPCA is closer to 0 dB as compared to PCA, as shown in Fig. 5.7(c). Even 

though neither approach can extract an uncorrelated and balanced ambient 

component, a relatively better ambient extraction is obtained with SPCA. 

Similar to the ideal case, this drawback of ambient extraction is an inherent 

limitation of PCA [HTG14]. Post-processing techniques like decorrelation 

[Fal06b] and post-scaling [Fal06], [BJP12] can be applied to further enhance 

ambient extraction. To sum up the first experiment, we can verify that when 

dealing with PAE having a directional primary component with time and level 

 

Figure 5.7 Comparison of spatial accuracy in PAE using PCA and SPCA in 

the primary-complex case. (a) ICTD in the extracted primary components; 

(b) ICLD in the extracted primary components; (c) ICLD in the extracted 

ambient components. Legend in (a) applies to all plots. 
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differences, SPCA extracts the primary and ambient components more 

accurately than PCA. 

5.4.2 Experiment 2: panning directions 

In the second experiment, a binaural recording of a matchbox sound shaking 

around the dummy head in the anti-clockwise direction was taken as the 

primary component, and a wave lapping sound was used as the ambient 

component. The four plots in Fig. 5.8 illustrate the short-time cross-correlation 

of the true primary component, mixed signal, primary component extracted by 

PCA, and primary component extracted by SPCA. The positions of the peaks 

on the mesh of these plots represent the direction of the primary components, 

where the time lag at 40 represents extreme left and 40 represents extreme 

  

 

 

 

 

 

 

 

Figure 5.8 Short-time cross-correlation function of (a) true primary component; 

(b) stereo signal with mixed primary and ambient components; (c) primary 

component extracted using PCA; (d) primary component extracted using 

SPCA. Frame size is 4096 samples with 50% overlap.  
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right. The anti-clockwise panning of the primary component around the head, as 

shown in Fig. 5.8(a), becomes less obvious after mixing with the ambient 

component, as shown in Fig. 5.8(b). Comparing the correlation of the primary 

component extracted using PCA and SPCA, as shown in Fig. 5.8(c) and 5.8(d), 

respectively, we can easily verify that only SPCA based PAE preserves the 

spatial cues of the primary component from the mixed stereo signal. This 

experiment confirms that SPCA can correctly track the moving directions of the 

primary components and thus leads to an improved extraction performance with 

more accurate spatial cues, as compared to PCA. 

5.4.3 Experiment 3: reverberation ambience 

In the third experiment, we considered the extraction of a direct signal and 

its reverberation from a stereo recording in a reverberant room. For the purpose 

of a more accurate evaluation, simulated room impulse responses (RIRs) were 

m1 m2

10 source

Positions, si

4m

5m

RT60 = 0.3s
 

Figure 5.9. Specifications of room, microphone positions and source positions 

in the reverberation experiment.  
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used. The RIR was generated using the software from [Hab14], which is created 

using the image method [AlB79]. As specified in Fig. 5.9, the size of the room 

is 5×4×6 m
3
 with reverberation time RT60 set as 0.3s. For the RIR generation, 

positions for two microphones were set as m1(2, 1.9, 2) and m2(2, 2.1, 2). The 

positions of a speech source varied in 10 locations (one at a time) in a straight 

line, as (2.5, si, 2) with si = 1.9+0.2*i, i = 1, 2, …, 10. The length of the RIR is 

4096 samples with sampling frequency at 44.1 kHz. In either channel, the 

mixed signal was obtained by convolving the source with the generated RIR. 

The true primary components were synthesized by convolving only the direct 

paths with the source, while the remainder paths are used as the responses for 

the synthesis of the true ambient components, as shown in Fig. 5.10. It shall be 

noted that in this experiment, the primary and ambient components are 

correlated. 
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Figure 5.10 An example of the generated RIR and the division of the response 

for primary and ambient components. 
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Performance of PAE using PCA and SPCA is compared in Figs. 5.11-5.13. 

It can be observed clearly in these figures that as compared to PCA based PAE, 

SPCA based PAE can estimate k and   much closer to their true values, 

thereby yielding a smaller ESR in both primary and ambient extraction, as well 

 

Figure 5.12 ESR of (a) primary extraction and (b) ambient extraction using 

PCA and SPCA in the reverberation experiment. The NLMS approach 

[UsB07] is included in (b) for comparison of ambient extraction performance. 
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Figure 5.11 Comparison of the estimation of (a) k and (b)   between PCA and 

SPCA based PAE in the reverberation experiment. Legend in (a) applies to 

both plots. 
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as having spatial cues (i.e., ICTD, ICLD) closer to the true values. In particular, 

we have also applied the normalized least-mean-square (NLMS) approach 

proposed by Usher [UsB07] in the ambient extraction. As shown in Fig. 5.12 

(b), the proposed SPCA approach also outperforms NLMS significantly. 

5.4.4 Experiment 4: recordings 

In the fourth experiment, we tested and compared these PAE approaches 

using recorded signals. The measurements were conducted in a recording room 

(5.4×3.18×2.36 m
3
) with a reverberation time of 0.2s at the School of Electrical 

and Electronic Engineering, Nanyang Technological University, Singapore. The 

layout of the experiment setup is illustrated in Fig. 5.14. Four loudspeakers A1 

to A4 were used to reproduce the ambient sound of a canteen. The primary 

component, a speech signal, was played back over loudspeaker P, which was 

placed at each of the three positions with 0°, 45°, and 90° azimuth in the 

horizontal plane. At the center of the room, a dummy head, which was fitted 

 

Figure 5.13 Comparison of spatial accuracy in PAE using PCA and SPCA in 

the reverberation experiment. (a) ICTD in the extracted primary components; 

(b) ICLD in the extracted primary components; (c) ICLD in the extracted 

ambient components. Legend in (a) applies to all plots. 
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with a pair of microphones mounted on the two ears, was used to record the 

simulated sound scene. To evaluate the performance of the PAE approaches, the 

“ground truth” reference signals of this experiment (i.e., the true primary and 

ambient components) were recorded by muting either the one-channel primary 

loudspeaker or the four-channel ambient loudspeakers.  

The performance of PCA and SPCA based PAE are summarized in Tables 

5.3, 5.4 and 5.5. In Table 5.3 and Table 5.4, the performance of the two PAE 

approaches is examined by comparing  , k, and the spatial cues with their true 

values, respectively. We observed that SPCA based PAE yields much closer 

results to the true values as compared to PCA based PAE for all directions of 

the primary component. From Table 5.5, we observed that the values of ESR in 

SPCA based PAE are lower (up to 50%) than those in PCA based PAE. These 

 

Figure 5.14. Layout of the fourth experiment setup. Four ambient loudspeakers 

are located at A1-A4. The primary loudspeaker P is positioned at one of the 

three directions 0°, 45°, 90° in the horizontal plane with a radius of 1.5 meter. 

Two microphones m1 and m2 are mounted onto the two ears of the dummy 

head. 
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observations from the fourth experiment indicate clearly that SPCA based PAE 

outperforms PCA based PAE in more practical situations. 

 

5.5 Conclusions 

In this chapter, we investigated the performance of PCA based PAE in the 

ideal and primary-complex cases. The performance of PAE was evaluated on 

extraction accuracy and spatial accuracy. In practice, the conventional PCA 

based PAE exhibits severe performance degradation when dealing with the 

Table 5.3 Comparison of  , k in the fourth experiment. 

   k 

θ 0° 45° 90° 0° 45° 90° 

True 0.81 0.79 0.86 0.95 1.47 1.81 

PCA 0.66 0.31 0.57 0.93 6.06 3.18 

SPCA 0.76 0.73 0.72 0.94 1.54 2.18 

 

Table 5.4 Comparison of spatial cues in the fourth experiment. 

 ICTDP ICLDP (dB) ICLDA(dB) 

θ 0° 45° 90° 0° 45° 90° 0° 45° 90° 

True 1 -17 -31 -1.02 7.74 11.90 1.03 1.18 1.03 

PCA 0 0 0 -1.46 36.03 23.11 1.46 -36.03 -23.11 

SPCA 1 -17 -31 -1.26 8.65 15.60 1.26 -8.65 -15.60 

 

Table 5.5 Comparison of ESR in the fourth experiment. 

 Primary component Ambient component 

θ 0° 45° 90° 0° 45° 90° 

PCA 0.27 0.64 0.88 1.08 1.89 2.49 

SPCA 0.21 0.31 0.34 0.81 1.02 1.39 
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input signals under the primary-complex case, where the primary component is 

partially correlated at zero lag. Without the knowledge of the correlation of the 

primary component, the two important parameters primary panning factor and 

primary power ratio of the stereo signal cannot be estimated accurately. 

Furthermore, it was found that as the primary correlation decreases, the error in 

the primary and ambient components extracted by PCA based PAE generally 

increases. Based on this finding, the proposed SPCA based PAE approach 

maximizes the primary correlation by appropriately time-shifting the input 

signals prior to the extraction process. Overlapped output mapping method with 

a minimum duration of 2 ms overlapping is required to avoid the switching 

artifacts introduced by time-shifting. As compared to the conventional PCA 

based PAE, the proposed approach retains the ICTD and corrects the ICLD of 

the extracted primary component, as well as reduces the extraction error by as 

much as 50%. With the improved performance of the proposed approach 

validated using synthesized signals and real-world recordings in our 

experiments, we conclude that the proposed time-shifting technique can be 

employed in PAE to handle more generic cases of stereo signals that contain 

partially correlated primary components. In the following chapter, we will 

discuss some ideas for PAE to handle an even more complex case, i.e., primary 

components with multiple sources coming from different directions.  
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Chapter 6 

Multiple Source based Primary Ambient 

Extraction 

 

In this chapter
1
, we investigate an even more complex case in PAE. The 

basic stereo signal model introduced in Chapter 3 limits the number of the 

dominant source in the primary components to be only one. This assumption 

generally holds considering that each signal frame is quite short. However, it is 

still very likely to encounter the exceptional case where there are multiple 

dominant sources in the primary components. Conventional approaches that 

ignore this difference will not work well and a robust PAE approach must be 

devised to handle such cases. For this purpose, we will discuss two approaches 

to improve the performance of PAE under the case of multiple dominant 

concurrent sources. The first approach, known as the subband technique, is 

studied in Section 6.1, and Section 6.2 details the second approach referred to 

as the multi-shift technique. Similar to Chapter 5, PCA based PAE approaches 

are selected for our testing. Since it is the primary components that incur the 

challenge, we shall focus on the extraction of primary components, and the 

ambient components can be obtained by subtracting the extracted primary 

components from the mixed signal. Further discussions and conclusions are 

presented in Section 6.3. 

1
 The work reported in this chapter is an extension from the author’s conference papers 

[HGT14] presented in ICASSP 2014 and [HeG15] presented in ICASSP 2015. 
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6.1 Subband technique and frequency bin partitioning 

In this section, we focus on the study of subband PAE in the case of 

multiple sources. First, we transform the time domain time-shifted PCA based 

PAE into frequency domain. Next, we discuss in detail the most important step 

of frequency-domain PAE, i.e., partitioning of the frequency bins. Subsequently, 

a series of simulations are presented to validate the PAE approaches. 

6.1.1 Time-shifted PCA in frequency domain 

First, we consider PAE with one dominant source in primary components in 

the frequency domain by converting the previous time-domain analysis into 

frequency domain. From (5.10)-(5.11), only parameters primary panning factor 

k and ICTD o  are relevant to the extracted primary components in PCA and 

SPCA, and both parameters are computed using the correlations. Therefore, we 

shall see how correlations are computed in frequency domain. As discussed in 

[WSL06], the correlation of different lag  (in samples) between two signals 

ix  and 
jx can be computed by 

  
    

    

*

*

, 0
,

, 0

i j

ij

i j

IDFT l l
r

IDFT l l






 


 




X X

X X
 (6.1) 

where  i lX is the lth bin of the DFT of ix and * denotes complex conjugate. 

The ICTD is determined based on the maximum of the cross-correlation 

   01arg max .o r


   (6.2) 

Time-shifting in time domain is equivalent to phase-shifting in frequency 

domain [Mit06], that is, 
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DFT
j l N

i o iN
n l e

     x X  (6.3) 

 Thus, we can rewrite (5.10) in the frequency domain as 
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 (6.4) 

6.1.2 Frequency bin partitioning 

To effectively handle multiple sources in the primary components, 

frequency bins of the input signal are grouped into several partitions, as shown 

in Fig. 6.1. In each partition, there is only one dominant source and hence one 

corresponding value of k and o is computed. Ideally, the number of partitions 

should be the same as the number of sources, and the frequency bins should be 

grouped in a way such that the magnitude of one source in each partition is 

significantly higher than the magnitude of other sources. However, the number 

and spectra of the sources in any given input signals are usually unknown. 

Hence, the ideal partitioning is difficult or impossible to achieve. 

     

Stereo input signal
Extracted primary and 

ambient components

Frequency bin 

grouping

DFT
Inverse

DFT

Frequency bin 

partitioning

ITD 

estimation

Shifted PCA

(frequency 

domain)

 

Figure 6.1 Block diagram of frequency bin partitioning based PAE in 

frequency domain 
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Alternatively, we consider two types of feasible partitioning methods, 

namely, fixed partitioning and adaptive partitioning. Regardless of the input 

signal, the fixed partitioning classifies the frequency bins into a certain number 

of partitions uniformly [AvJ04], [Fal06] or non-uniformly, such as equivalent 

rectangular bandwidth (ERB) [FaB03]. By contrast, adaptive partitioning takes 

into account of the input signal via the top-down (TD) or bottom-up (BU) 

method. BU method starts with every bin as one partition and then gradually 

reduces the number of partitions by combining the bins. Conversely, TD starts 

from one partition containing all frequency bins and iteratively divides each 

partition into two sub-partitions, according to certain conditions. As the number 

of partitions is usually limited, TD is more efficient than BU, and hence 

preferred. 

To determine whether one partition requires further division, ICC-based 

criteria are proposed in TD partitioning. First, if the ICC of the current partition 

is already high enough, we consider only one source is dominant in the current 

partition and cease further division of the partition. Otherwise, the ICCs of the 

two divided sub-partitions are examined. The partitioning is continued only 

when at least one of two ICCs of the sub-partitions becomes higher, and neither 

ICC of the sub-partitions becomes too small, which indicates that no source is 

dominant. Suppose the ICCs of the current partition, and two uniformly divided 

sub-partitions are ϕ0, ϕ1, ϕ2, as shown in Fig. 6.2. For generality, a higher 

threshold of ICC ϕH and a lower threshold ϕL are introduced. Thus, we propose 

the following three criteria for the continuation of partitioning in TD:  

a) ϕ0 < ϕH, and  

b) Max(ϕ1, ϕ2) > ϕ0, and  
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c) Min(ϕ1, ϕ2) > ϕL.  

 The partitioning is stopped when any of the three criteria is unsatisfied. 

 6.1.3 Experimental results and discussions 

To evaluate the performance of frequency-domain PAE approaches, a number 

of simulations are conducted. In these simulations, speech and music signals are 

selected as two sources in the primary components, which are amplitude panned 

and time-shifted separately to simulate different directions. To fulfill the 

assumptions of the stereo signal model, uncorrelated white Gaussian noise is 

used as the ambient component. Subsequently, the primary and ambient 

components are linearly mixed by letting PPR=0.9. DFT of size N=4096 

(sampling frequency at 44.1 kHz), and Hanning window with 50% overlapping 

is applied. Both PCA and SPCA are employed in the testing, and their settings 

are listed as follows:  

a) Full-band, without partitioning (denoted by F); 

b-e) Fixed partitioning, with 2, 8, 32 uniform (U) partitions or 20 non-uniform 

(N) partitions based on ERB [FaB03], (denoted by 2U, 8U, 32U, and 20N, 

respectively); 

φ0

φ1

…
φ2

 

Figure 6.2  An illustration of top-down partitioning 
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f) TD adaptive partitioning, with ϕH =0.7, and ϕL=0.05. 

The performance of PAE is determined by the error-to-signal ratio (ESR) as in 

previous chapters, which can be computed as 

 

2 2

0 0 1 12 2
10 2 2

0 12 2

ˆ ˆ
ESR(dB) 10log 0.5 .

   
   

    

p p p p

p p
 (6.5) 

A better performance is achieved when ESR is smaller. 

First, we test these PAE approaches with signals containing one source (a 

speech) in the primary components and the ESR results are presented in Table 

6.1 (column “1S”). SPCA is better than PCA since it takes the time difference 

of the primary component into consideration. Comparing the results of SPCA in 

fixed partitioning with those in the full-band, we observed that the PAE 

performance degrades as the number of partitions increases. This observation 

indicates that the partitioning is not required and should be avoided for the 

single source case. Nevertheless, the performance of TD is quite close to the 

full-band approach. 

Next, we test the performance of PAE when there are two sources in the 

primary components. Basically, three cases for the directions of two sources are 

specified as follows: 

a) DS: in different sides, i.e., one in the left, the other in the right; 

b) C: one in the center, the other in the left or right;  

c) SS: in the same side, i.e., both are in the left or right.  
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The ESR results are shown in Table 6.1. First, we found that the performance of 

PCA is worse than that of SPCA, especially when no sources are in the center. 

Second, not all SPCA approaches with partitioning can yield a better 

performance than SPCA in full-band, especially when the directions of the two 

sources are closer (e.g., SS), as shown in Fig. 6.3. Generally, TD performs 

better than the fixed partitioning approaches, as well as the full-band approach.  

As the directions of the two sources get closer (i.e., from DS to SS), better 

performance with TD is usually achieved. 

 

6.2 Multi-shift technique 

In Chapter 5, we introduced a time-shifting techqnique to improve the 

performance of PAE when dealing with partically correlated primary 

components. The input signal is time shifted according to the estimated ICTD 

that corresponds to the direction of the dominant source. However, one single 

shift only accounts for one direction, which is ineffective for primary 

Table 6.1 ESR of PAE for two sources 

Approach Setting 1S SS C DS 

PCA 

F -3.69 -4.18 -8.06 -4.74 

2U -3.38 -3.95 -8.19 -5.04 

8U -3.34 -3.91 -8.34 -5.22 

32U -3.16 -3.89 -8.44 -5.48 

20N -3.33 -3.98 -9.55 -6.85 

TD -3.72 -4.19 -8.44 -5.03 

SPCA 

F -14.78 -10.16 -8.07 -6.45 

2U -12.34 -9.89 -8.38 -6.85 

8U -11.52 -9.8 -8.57 -7.11 

32U -10.63 -9.07 -8.44 -7.25 

20N -10.34 -7.29 -9.07 -7.73 

TD -14.13 -10.41 -8.58 -7.93 
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components that consist of sound sources from multiple directions. Thus, a 

common approach is to decompose the signal into subband before the 

extraction, assuming that only one source is dominant in each subband [Fal06], 

[HGT14]. Moreover, the directions of multiple sources can be tracked [RoW08] 

and localized [WoW12] in the presence of ambient noise. Nevertheless, 

subband PAE approaches become problematic when the spectra of the sources 

in the primary components overlap in certain subbands. Meanwhile, timbre 

change is an inevitable problem in subband PAE. 

In this section, we investigate the primary component extraction (or primary 

extraction for short) with multiple directions by extending the single shift 

SPCA to multiple shifts. These shifts are performed based on the ICTD 

estimation. While in the output, the extracted primary components are 

correspondingly shifted back, weighted and summed to obtain the final results 

 

Figure 6.3 Comparison of ESR for SPCA with different partitioning settings 
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of the extracted primary components. We refer to this method as multi-shift 

PCA (MSPCA) in this section. The typical structure of MSPCA is shown in Fig. 

6.4. 

6.2.1 Multi-shift PCA 

In many applications of spatial audio, concurrent sound sources from 

different directions and even the reflections of these sound sources (image 

sources) are frequently encountered in the stereo mix. These directions of the 

sources and reflections imply multiple different ICTDs. In such cases, SPCA 

with one single shift that corresponds to one single direction becomes 

problematic. Therefore, to account for multiple directions in the primary 

components of the stereo signal, we extend SPCA from one single shift to 

multiple shifts, and develop MSPCA for primary extraction. The typical structure 

of the MSPCA (MSPCA-T) is shown in Fig. 6.4. First, several ICTDs are 

estimated from the stereo input signal by finding the peaks in the short time cross 

correlation function [Mat13]. Next, the input signal is time shifted according to 

the estimated ICTDs [HTG13]. For every shifted version, PCA is applied to 

obtain the extracted primary components. Finally, the extracted primary 

components of all shifted versions are properly mapped, weighted and linearly 

summed to obtain the final output of the extracted primary components. Note 

that the weights are computed according to the significance of each shifted 

version. 

Combining the selective time-shifting with the significance based weighting 

method, a consecutive structure for MSPCA can also be employed, as shown in 

Fig. 6.5. Instead of shifting the input signal according to a few selected ICTDs, 
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we perform the shifting consecutively lag by lag. Subsequently, PCA based 

primary extraction is employed for each shifted version. Before reversing the 

one-lag shifting and adding to the final output, the extracted primary components 

of each shifted version are weighted based on the significance of each shifted 

version. By assuming that those shifted versions having higher ICC are more 

significant, the weights are set higher for the shifted version with higher ICC. Via 

this ICC based weighting method, we can unify the consecutive MSPCA and 

MSPCA-T. 

 Let the stereo input signal be  0 1, .X x x  The shifted signal is

 0 1, l
l X x x  with nth sample of 1

l
x  shifted by l lags, as    1 1 ,lx n x n l 

where  , .l L L   The extracted primary components at the lth shifted version 

ˆ
lP  are computed using PCA. The final output of the extracted primary 

Multiple 
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Figure 6.4 Typical structure of MSPCA (MSPCA-T). Stereo input signal 

 0 1, ;  iX x x  is the ith estimated ICTD (T is the total number of ICTDs);  

iX  and ˆ
iP  are the corresponding shifted signal and extracted primary 

component, respectively. The final output of the extracted primary components 

is denoted by ˆ .P   
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components P̂  can be expressed as a weighted sum of the shifted back version 

of ˆ .lP  The nth sample of P̂ (either 0p̂ or 1p̂ ) is hence obtained by 

    ˆ ˆ ,
L

l l

l L

P n w P n l


   (6.6) 

where 0lw    is the weight applied on ˆ .lP  To retain the overall signal power, 
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Figure 6.5 Block diagram of MSPCA with consecutive structure. The shift and 

reverse shift of a stereo signal is realized by delaying and advancing one 

channel of the stereo signal with the other channel kept unchanged. 
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the weights shall sum up to one, i.e., 1.
L

l

l L

w


 Since the weights in consecutive 

MSPCA are proportional to the ICC of each lag, a straightforward way to obtain 

the weights is to employ the exponent of the ICC, i.e., ,
L

a a

l l l

l L

w  


  where a 

is the exponent and l  is the ICC of lag l. Larger values of a lead to sparser 

weights. Examples of the exponent selection for the weighting methods are 

shown in the following section. 

6.2.2 Experimental results and discussions 

To evaluate the performance of the proposed MSPCA based primary extraction, 

a number of simulations and subjective listening tests are conducted. In our 

experiments, primary components consist of a speech signal and a music signal, 

which are amplitude panned by a factor of three and time shifted by 20 lags,  

towards the channel 1 and channel 0, respectively; and uncorrelated white 

Gaussian noise is used as the ambient component. Subsequently, the primary and 

ambient components are linearly mixed by setting the root-mean-square power 

of the speech, music and ambient component to be equal. This setting constraints 

the primary power ratio to 0.67. Next, PCA, SPCA and MSPCA with different 

settings are employed to extract primary components from the synthesized stereo 

signals. The searching range for ICTD is ±50 lags, which is around 2ms for 

sampling frequency at 44.1 kHz. Finally, the performance of primary extraction 

using these approaches is compared using objective metrics and subjective 

testing. 
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It can be found that PCA and SPCA can be considered as special cases of 

MSPCA by specifically setting the weights. Both PCA and SPCA have only one 

nonzero weights, but at different lags. While the corresponding lag for the unit 

weight in PCA is always zero, SPCA places the unit weight at the lag 

corresponding to maximum ICC. Since all weights shall sum up to one, this 

maximum weight for PCA and SPCA will be exactly equal to one. MSPCA-T 

can detect the two ICTDs by peak finding. After normalization, we can consider 

it having two nonzero weights at the two corresponding lags. For consecutive 

MSPCA, we examine two exponent values, namely, a = 2 and 10. Summarizing 

all different settings for these approaches, the weighting methods are compared 

in Fig. 6.6. As discussed, PCA and SPCA have only one nonzero weight at zero 

lag and -20 lag, respectively. For MSPCA-T, two weights are applied at two 

distinct lag positions, though the positive ICTD for the music is not as accurate as 

the negative ICTD for the speech. For consecutive MSPCA with different 

exponent values, the non-zero weights are found for all the lags, and apparently 

higher weights are given to those lags that are closer to the directions of the 

primary components. As the exponent value a increases, the differences among 

the weights at various lags become more significant. When a is high (e.g., a=10), 

the weighting method in consecutive MSPCA becomes similar to SPCA, as seen 

from Fig. 6.6(b) and Fig. 6.6(e). 

After applying these approaches, the objective performance on the extraction 

accuracy of the primary component is determined by ESR, as defined in (6.5). 

The ESR results for these approaches are illustrated in Fig. 6.7. It is obvious that 

MSPCAs generally perform better than PCA or SPCA by having smaller ESR. It 

is also quite interesting to observe that consecutive MSPCA approaches 
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outperform MSPCA-T. This implies that the accuracy in the estimation of the 

number of the directions and the associated ICTDs are extremely critical for 

MSPCA-T. Failure to accurately estimate any ICTDs will degrade the overall 

extraction performance, as observed here. By contrast, consecutive MSPCA 

mitigates this problem by applying weights at all lags. Furthermore, the 

averaging of the ambient components across various shifted versions could also 

reduce ambient leakage in the extracted primary components. Between the two 

consecutive MSPCA approaches, MSPCA(a=2) performs better than 

 

Figure 6.6 An illustration of the weighting methods in PCA, SPCA and 

MSPCAs. Negative and positive lags correspond to the direction towards the 

channel 1 and channel 0, respectively. 
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MSPCA(a=10). Therefore, the exponent applied on the ICC for the weights in 

consecutive MSPCA cannot be too large. 

In addition to the objective assessment on the error performance, subjective 

testing of localization accuracy of the primary extraction was also conducted. 

The testing method was based on MUltiple Stimuli with Hidden Reference and 

Anchor (MUSHRA) [ITU03b], [Vin13]. Nine signals, including primary 

components extracted using the five methods, one known reference, one hidden 

reference and two anchors, were tested. The subjects were asked to rate a score of 

0-10, where a score of 0 denotes the worst localization (i.e., the two directions are 

reversed), and a score of 10 denotes the same directions perceived as the 

reference. When at least one direction is accurate, a score of no less than 5 shall 

be given, and a score of 3-7 shall be appropriate for those signals with perceived 

directions neither too close nor too bad. Finally, 12 subjects participated in the 

experiment and the results are shown in Fig. 6.8. Generally, MSPCAs produce 

 

Figure 6.7 Objective performance on extraction accuracy measured by ESR for 

PCA, SPCA, MSPCAs. 
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more accurate localization of the primary components among these testing 

methods. Similar to the observation in ESR, MSPCA(a=2) performs the best and 

MSPCA(a=10) degrades the localization significantly. Therefore, it can be 

concluded that consecutive MSPCA with proper weighting can help improve 

both the extraction accuracy and localization accuracy of the primary 

components when there are multiple directions. 

 

6.3 Further discussions and conclusions 

In this chapter, two techniques to improve the performance of PAE in the 

case of multiple concurrent sources are discussed. PCA and SPCA based PAE 

approaches are employed in this study. 

 

Figure 6.8 Subjective performance on localization accuracy for PCA, SPCA, 

MSPCAs. 
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The subband technique was derived in frequency-domain. We found that 

frequency bin partitioning is unnecessary for one source, but this partitioning 

plays an essential role for multiple sources, especially when the spectra of the 

sources overlap. Conventional fixed partitioning and proposed top-down 

adaptive partitioning methods were compared for both PCA and SPCA in our 

simulations. Generally, SPCA outperforms PCA regardless of the partitioning 

methods. As for the influence of different partitioning methods in SPCA, we 

found that not all partitioning methods yield better performance than the 

full-band approach, whereas the best performance is obtained with the proposed 

ICC-based TD partitioning method.  

On the other hand, multi-shift technique takes a time-domain approach that 

extends the single time-shifting into multiple shifts to account for the multiple 

directions. Two different structures of MSPCA are examined. While MSPCA 

with typical structure is simpler, its performance relies heavily on the correct 

estimation of the ICTDs. By contrast, consecutive MSPCA is more robust by 

applying weights on all shifted versions. The weighting method for different 

shifted versions is found to be critical to the extraction performance. In general, 

applying the exponential function of ICC with proper exponent value as the 

weightings yields a good performance in terms of the extraction accuracy as 

well as localization accuracy.  

Comparing the subband and multi-shift techniques in PAE, we found that 

both approaches can be considered as preprocessing before applying the 

conventional PAE approaches. In both techniques, the input singal is processed 

signals to match the assumptions of the signal model as close as possible.  ICC 

is critical in both approaches, in either the partitioning of frequency bins or 
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output weighting of the shifted versions, to obtain the extracted primary 

components. Both approaches can be considered as a filtering process. The 

subband technique can be viewed as frequency-domain filtering where the 

spectra of the mixed signal is multiplied by a complex weight in each frequency 

bin. The multi-shift technique could be used as a filter with coefficients derived 

using ICC. Under the filtering framework, the subband technique can be 

combined directly with the multi-shift technique in PAE for practical spatial 

audio reproductions. In the next chapter, we will discuss how PAE is applied in 

the headphone based spatial audio reproduction system to achieve a natural 

listening experience. 
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Chapter 7 

Natural Sound Rendering for Headphones 

 

In previous chapters, various PAE approaches are studied in ideal case, 

primary-complex case, and multiple source case. Yet, it is not clearly addressed 

how PAE is seamlessly incorporated in the spatial audio reproduction system. 

With the strong growth of assistive and personal listening devices, natural 

sound rendering over headphones is becoming a necessity for prolonged 

listening in multimedia and virtual reality applications. Thus, in this chapter, we 

focus on the spatial audio reproduction for headphone playback. The aim of 

natural sound rendering is to recreate the sound scenes with the spatial and 

timbral quality as natural as possible, so as to achieve a truly immersive 

listening experience. However, rendering natural sound over headphones 

encounters many challenges. Therefore, PAE based signal processing 

techniques are presented in this chapter
1
 to tackle these challenges and assist 

human listening. 

 

7.1 Introduction 

Sound plays an important role in our daily lives for communication, 

1
 The work reported in this chapter is an extension from the author’s Journal paper [SHT15] 

published in IEEE Signal Processing Magazine, March 2015 issue, and conference paper 

[HGT15d] presented in ICASSP 2015. 
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information, and entertainment. In most of these applications, listening is 

seldom from the physical sound sources but instead from playback devices, 

such as headphones or loudspeakers. Headphones, by virtue of their 

convenience and portability, are typically chosen as the preferred playback 

device, especially for personal listening. Therefore, to assist headphone 

listening, it is critical for the sound to be rendered in a way that listeners can 

perceive it as natural as possible. In this context, natural sound rendering 

essentially refers to rendering of the original sound scene using headphones to 

create an immersive listening experience and the sensation of “being there” at 

the venue of the acoustic event. To achieve natural sound rendering, the virtual 

sound rendered should exactly emulate all the spatial cues of the original sound 

scene, as well as the individual spectral characteristics of the listener’s ears. In 

this chapter, we mainly consider the most widely used channel-based audio as 

the input signals for the natural sound rendering system, though some of the 

signal processing techniques discussed could also be used in other  audio 

formats, such as object-based format and ambisonics [SWR13], [Pul07].  

In recent years, the design criteria for commercial headphones have 

undergone significant development. At Harman, Olive et al. investigated the 

best target responses for designing headphones based on the listener’s 

preference for the most natural sound [OWM13]. Creating realistic surround 

sound in headphones has become a common pursuit of many headphone 

technologies from Dolby, DTS, etc. Furthermore, personalized listening 

experience and incorporating the information of listening environment has also 

been the trends in headphone industry. These trends in headphones share one 

common objective: To render natural sound in headphones. 
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7.2 Challenges and signal processing techniques 

The listening process of humans can generally be considered as a 

source-medium-receiver model, as stated by Begault [Beg00]. This model is 

used in this chapter to highlight the differences between natural listening in real 

environment and listening over headphones. In natural listening, we listen to the 

physical sound sources in a particular acoustic space, with the sound waves 

undergoing diffraction, interference with different parts of our morphology 

(torso, head and pinna) before reaching the eardrum. This information of sound 

wave propagation can be encapsulated in spatial digital filters termed as 

head-related transfer functions (HRTFs) [Beg00]. Listeners also get valuable 

interaural cues for sound localization with head movements. However, 

headphone listening is inherently different from natural listening as the sources 

we are listening to are no longer physical sound sources but are recorded and 

edited sound materials. These differences between natural and headphone 

listening lead to various challenges in rendering natural sound over headphones, 

which can be broadly classified into the following three categories: 

1) From the perspective of source, the sound scenes rendered for 

headphone listening should comprise not only the individual sound sources but 

also the features of the sound environment. Listeners usually perceive these 

sound sources to be directional, i.e., coming from certain directions. Moreover, 

in most of the digital media content, the sound environment is usually perceived 

by the listener to be diffuse (partially). This perceptual difference between the 

sound sources and the sound environment requires them to be considered 

separately in natural sound rendering [SWR13]. Though there are other formats 

that can represent the sound scenes (e.g., object-based, ambisonics), the 



165 

 

convention for today’s digital media is still primarily channel-based format. 

Hence, the focus of this chapter lies in the rendering of channel-based audio, 

where sound source and environment signals are mixed in each channel 

[SWR13]. In channel-based signals, where only the sound mixtures are 

available (assuming one mixture in every channel), it is necessary to extract the 

source signals and environment signals, which can be quite challenging. 

Furthermore, most of the traditional recordings are processed, and mixed for 

optimal playback over loudspeakers, rather than headphones. Direct playback of 

such recordings over headphones results in an unnatural listening experience, 

which is mainly due to the loss of crosstalk and localization issues.  

2) From the perspective of medium, headphone listening does not satisfy 

free-air listening conditions as in natural listening. Since the headphone transfer 

function (HPTF) is not flat, equalization of the headphone is necessary. 

However, this equalization is tedious and challenging as the headphone 

response is highly dependent on the individual anthropometrical features and 

also varies with repositioning. 

3) From the perspective of receiver, the omission of listener’s 

individualized filtering with the outer ear in headphone listening often leads to 

coloration and localization inaccuracies. These individualized characteristics of 

the listener are lost when the sound content is recorded or synthesized 

non-individually, i.e., the subject in the listening is different from the subject in 

the recording or synthesis. Furthermore, the sound in headphone listening is not 

adapted to the listener’s head movements, which departs from a natural 

listening experience. 
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To tackle the above challenges and enhance natural sound rendering over 

headphones, digital signal processing techniques are commonly used. In Fig. 

7.1, we summarize the differences between natural listening and headphone 

listening, and introduce the corresponding signal processing techniques to 

tackle these challenges, which are: 

1) Virtualization: to match the desired playback for the digital media 

content; 

2) Sound scene decomposition using blind source separation (BSS) and 

primary ambient extraction (PAE): to optimally facilitate the separate 

rendering of sound sources and sound environment; 

Materials for 

loudspeaker playback
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movements
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Figure 7.1 A summary of the differences between natural listening and 

headphone listening and the corresponding signal processing techniques to 

solve these challenges for natural sound rendering. The main challenges and 

their corresponding signal processing techniques in each category (source, 

medium, and receiver) are highlighted and their interactions (not shown here) 

are further discussed in the chapter. 
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3) Individualization of HRTF: to compensate for the lost or altered 

individual filtering of the sound in headphone listening; 

4) Equalization: to preserve the original timbral quality of the source and 

alleviate the adverse effect of the inherent headphone response; 

5) Head tracking: to adapt to the dynamic head movements of the listener. 

 The remainder of this Chapter is structured as follows. Virtualization and 

head tracking, due to their high interactions, are explained together in Section 

7.3, followed by the decomposition of sound scenes in Section 7.4. Sections 7.5, 

and 7.6 describe individualization and equalization, respectively. These signal 

processing techniques are integrated and evaluated using subjective tests in 

Sections 7.7 and 7.8, respectively. Finally, the conclusions and future trends are 

presented in Section 7.9. 

 

7.3 Virtualization 

In digital media, sound is typically mixed for loudspeaker playback rather 

than headphone playback. The spatial sound to be rendered naturally over 

headphones should emulate the natural propagation of the acoustic waves 

emanating from the loudspeaker to the eardrum of the listener. To emulate 

stereo or surround sound loudspeaker rendering over headphones, virtualization 

techniques based on HRTFs corresponding to the loudspeaker positions are 

commonly used. Given these acoustic transfer functions (i.e., HRTFs), the 

virtualization technique is applicable to any multichannel loudspeaker setup, be  

it stereo, 5.1, 7.1, 22.2, or even loudspeaker arrays in wave-field synthesis.  As 

shown in Fig. 7.2, for every desired loudspeaker position, the signal in the mth 
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channel  cx n  is filtered with the corresponding HRTF    ,  xcL xcRh n h n , and 

summed before being routed to the left and right ears [Beg00], [GoJ07a], 

respectively, as:  

 

     

     

1

1
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,
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c
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R xcR c

c

y n h n x n

y n h n x n





 

 




 (7.1) 

where * denotes convolution and M is the total number of channels. When the 

HRTFs are directly applied to multichannel loudspeaker signals, the rendered 

sound scenes in headphone playback suffer from inaccurate virtual source 

directions, lack of depth, and reduced image width [GoJ07a], [BrS08]. 
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Figure 7.2 Virtualization of (a) multichannel loudspeaker signals  cx n  

[GoJ07a]. Note that head tracking can be used to update the selected 

directions of HRTFs/BRIRs. 
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To solve these problems in virtualization of multichannel loudspeaker 

signals and achieve a faithful reproduction of the sound scenes, the HRTFs 

should be applied to the individual source signals that are usually extracted 

(using BSS, PAE) from the loudspeaker signals (i.e., mixtures). In this 

virtualization as shown in Fig. 7.3, the sources are rendered directly using the 

HRTFs of the corresponding source directions    ,  skL skRh n h n : 
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Figure 7.3 Virtualization of multiple sources  ks n  and environment 

signals    , .L Ra n a n  Signals    ,L Ry n y n  are sent to the left and right 

ear, respectively. Note that head tracking can be used to update the selected 

directions of HRTFs/BRIRs. 
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where K is the total number of sources,   ks n  is the kth source in the 

multichannel signal, and the environment signals    ,  L Ra n a n  are the 

rendered signals representing the sound environment perceived at two ears. To 

render the acoustics of the environment, the environment signals can be either 

synthesized according to the sound environment [AvJ04] or extracted from the 

mixtures. Techniques like decorrelation [GoJ07a], [Fal06] and artificial 

reverberation [MeF10] are commonly employed to render the environment 

signals in order to create a more diffuse and natural sound environment.  

Furthermore, adding the reverberation of sources (or the loudspeaker signals 

in virtualization of multichannel loudspeaker signals) can also improve the 

realism of the reproduced sound scene [FaB03].  Therefore, in virtualization, it 

is quite common to use binaural room impulse response (BRIR) [Beg00], 

[GoJ07a] that encapsulates HRTFs and reverberation. In this case, selecting the 

correct amount of early reflections as well as late reverberation is critical to 

recreate a faithful sound environment [Beg00]. In general, the BRIR that 

matches the sound environment of the scene or BRIR of a mixing studio is 

considered to be more suitable [OWM13]. As discussed in Section 7.2, natural 

sound rendering requires the accurate reproduction of both the sound sources 

and the sound environment. Compared to the virtualization of multichannel 

loudspeaker signals (Fig. 7.2), the latter technique of virtualizing the source and 

environment signals (Fig. 7.3) is more desirable as it is closer to natural 

listening [BrS08], [Fal06], [MeF10]. These virtualization techniques can also be 

incorporated into spatial audio coding systems, such as binaural cue coding 

[FaB03], spatial audio scene coding [GoJ07a], and directional audio coding 

[Pul07]. 
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In virtualization, the directions of the sources (or the loudspeakers in 

virtualization of multichannel loudspeaker signals as in Fig. 7.2) have to be 

calibrated according to the head movements (as in natural listening). To fulfill 

this need, the HRTFs/BRIRs in the virtualization are updated on the fly based 

on these head movements that are often tracked by a sensor (e.g., accelerometer, 

gyroscope, camera, etc.). The latency between the head tracking and sound 

rendering should be such that the localization accuracy is not affected [AlD11]. 

When incorporated in the virtualization process, such a head tracking system 

can provide useful dynamic cues to resolve the localization conflicts [Beg00] 

and enhance natural sound rendering [BWA01], [AlD11]. It shall be noted that 

head tracking is more critical for the directional sources but less important for 

the diffuse signals like environment signals and late reverberation [AlD11]. 

This is because the perception of diffuse signals is less affected by head 

movements.  

 

7.4 Sound scene decomposition 

To achieve natural sound rendering in headphones, two important 

constituents of the sound scenes are required in the virtualization, namely, the 

individual sound sources and characteristics of the sound environment. 

However, this information is usually not directly available to the end user. One 

has to work with the existing digital media content that is available, i.e., the 

mastered mix distributed in channel-based formats (e.g., stereo, 5.1). Therefore, 

to facilitate natural sound rendering, it is necessary to extract the sound sources 

and/or sound environment from their mixtures. In this section, we discuss two 
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types of techniques applied in sound scene decomposition, namely, BSS and 

PAE. 

7.4.1 Decomposition using BSS 

Extracting the sound sources from the mixtures, often referred to as BSS, 

has been extensively studied in the last few decades. In BSS, the sound scene is 

considered to be the sum of distributed sound sources. The basic mixing model 

in BSS can be considered as anechoic mixing, where the sources  ks n  in 

each mixture  cx n  have different gains ckg  and delays .ck  Hence, the 

anechoic mixing is formulated as follows: 

        
1

,     1,2, , ,
K

c ck k ck c

k

x n g s n e n c C


                   (7.3) 

where  ce n is the noise in each mixture, which is usually neglected for most 

cases. Note that estimating the number of sources is quite challenging and it is 

usually assumed to be known in advance [HKO04]. This formulation can be 

simplified to represent instantaneous mixing by ignoring the delays, or can be 

extended to reverberant mixing by including multiple paths between each 

source and mixture. An overview of the typical techniques applied in BSS is 

listed in Table 7.1.  

Based on the statistical independence and non-Gaussianity of the sources, 

independent component analysis (ICA) algorithms have been the most widely 

used techniques in BSS to separate the sources from mixtures in the determined 

case, where the numbers of mixtures and sources are equal [HKO04]. In the 

over-determined case, where there are more mixtures than sources, ICA is 

combined with principal component analysis (PCA) to reduce the dimension of 
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the mixtures, or combined with least-squares (LS) to minimize the overall 

mean-square-error (MSE) [HKO04]. In practice, the under-determined case is 

the most common, where there are fewer mixtures than sources. For the 

under-determined BSS, sparse representations of the sources are usually 

employed to  increase the likelihood of sources to be disjoint [PBD10]. The 

most challenging under-determined BSS is when the number of mixtures is two 

or lesser, i.e., in stereo and mono signals. 

Stereo signals (i.e., C = 2), being one of the most widely used audio format, 

have been the focus in BSS. Many of these BSS techniques can be considered 

as time-frequency masking and usually assume one dominant source in one 

time-frequency bin of the stereo signal [YiR04]. In these time-frequency 

masking based approaches, a histogram for all possible directions of the sources 

is constructed, based on the range of the bin-wise amplitude and phase 

differences between the two channels. The directions, which appear as peaks in 

the histogram, are selected as source directions. These selected source 

directions are then used to classify the time-frequency bins, and to construct the 

mask. For every time-frequency bin  ,m l , the kth source at cth channel 

 ˆ ,ckS n l  is estimated as:  

      ˆ , , , ,ck ck cS m l m l X m l   (7.4) 

Table 7.1 Overview of typical techniques in BSS 

Objective: To extract K (K > 2) sources from C mixtures 

Case Typical techniques 

Determined: K = C ICA [HKO04] 

Over-determined: K < C ICA with PCA or LS [HKO04] 

Under-determined: 

K > C 

C > 2 ICA with sparse solutions [HKO04], [PBD10] 

C = 2 Time-frequency masking [YiR04] 

C = 1 NMF [Vir06], [VBG14]; CASA [WaB06] 
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where the mask and the mth mixture are represented by  ,ck m l  and 

 , ,cX m l  respectively. 

In the case of single-channel (or mono) signals, the separation is even more 

challenging since there is no inter-channel information. Hence, there is a need 

to look into the inherent physical or perceptual properties of the sound sources. 

Non-negative matrix factorization (NMF) based approaches are extensively 

studied and applied in single-channel BSS in recent years. The key idea of 

NMF is to formulate an atom-based representation of the sound scene [Vir06], 

where the atoms have repetitive and non-destructive spectral structures. NMF 

usually expresses the magnitude (or power) spectrogram of the mixture as a 

product of the atoms and time varying non-negative weights in an unsupervised 

manner. These atoms, after being multiplied with their corresponding weights, 

can be considered as potential components of sources [VBG14]. Another 

technique applied in single-channel BSS is the computational auditory scene 

analysis (CASA) that simulates the segregation and grouping mechanism of 

human auditory system [WaB06] on the model-based representation (monaural 

case) of the auditory scenes. An important aspect worth considering is the 

directions of the extracted sources, which can usually come as a by-product in 

multichannel BSS. In single-channel BSS, this information of source directions 

has to be provided separately. 

7.4.2 Decomposition using PAE 

In most sound scenes, the mixture comprises not only the dry sources but 

also the reverberation and ambient sound, which are contributed by the 

acoustics of the surrounding space. Therefore, the mixing model of the sources 
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in BSS usually does not match with the actual sound scenes. In this chapter, we 

refer to the dominant sources as primary (or direct) components, and the signals 

contributed by the sound environment as ambient (or diffuse) components. The 

primary and ambient components are perceived to be directional and diffuse, 

respectively. Different rendering methods should be applied to the primary and 

ambient components [BrS08], [AvJ04] due to their perceptual differences. 

Therefore, rendering of natural sound scenes requires the decomposition of the 

mixtures into primary and ambient components [BrS08], [AvJ04], [MeF10]. 

Detailed discussions on PAE can be found in previous chapters of this thesis.  

7.4.3 A comparison between BSS and PAE 

Both BSS and PAE are extensively applied in sound scene decomposition, 

and a comparison between these approaches is summarized in Table 7.2. The 

common objective of BSS and PAE is to extract useful information (mainly the 

sound sources and their directions) about the original sound scene from the 

mixtures, and to use this information to facilitate natural sound rendering. 

Following this objective, there are three common characteristics in BSS and 

PAE. First, only the mixtures are available and usually no other prior 

information is given. Second, the extraction of the specific components from 

the mixtures is based on certain signal models. Third, both techniques require 

objective and subjective evaluation.  

As discussed earlier, the applications of different signal models in BSS and 

PAE lead to different techniques. In BSS, the mixtures are considered as the 

sums of multiple sources, and the independence among the sources is one of the 

most important characteristics. In contrast, the mixing model in PAE is based 
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on human perception of directional sources (primary components) and diffuse 

sound environment (ambient components). The perceptual difference between 

primary and ambient components is due to the directivity of these components 

that can be characterized by their correlations. The applications that adopted 

BSS and PAE also have distinct differences. BSS is commonly used in speech 

and music applications, where the clarity of the sources is usually more 

important than the effect of the environment. On the other hand, PAE is more 

suited for the reproduction of movie and gaming sound content, where the 

ambient components also contribute significantly to the naturalness and 

immersiveness of the sound scenes. Subjective experiments revealed that BSS 

and PAE based headphone rendering can improve the externalization and 

enlarge the sound stage with minimal coloration [BrS08]. It shall be noted in 

Table 7.2 Comparison between BSS and PAE in sound scene decomposition 

 BSS PAE 

Objective 
To obtain useful information about the original sound scene from given 

mixtures, and facilitate natural sound rendering. 

Common 

characteristics 

 Usually no prior information, only mixtures; 

 Based on certain signal models; 

 Require objective as well as subjective evaluation. 

Basic mixing 

model 

Sums of multiple sources 

(independent, non-Gaussian, etc.) 

Primary components  (highly 

correlated)+ Ambient components 

(uncorrelated) 

Techniques 

ICA [HKO04], sparse solutions 

[PBD10], time-frequency masking  

[YiR04], NMF [Vir06], [VBG14], 

CASA [WaB06], etc. 

PCA [MGJ07], LS 

[Fal06],[HTG14], time-frequency 

masking [AvJ04],[MGJ07],  

time/phase-shifting [HTG13], 

[HGT14], etc. 

Typical 

applications 
Speech, music Movie, gaming 

Related 

applications 

Speech enhancement, noise 

reduction, speech recognition, 

music classification 

Sound reproduction, 

sound localization,  

coding 

Limitations 

 Small number of sources 

 Sparseness/disjoint 

 No/simple environment 

 Small number of sources 

 Sparseness/disjoint 

 Low ambient power 

 Primary ambient components 

uncorrelated 
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certain cases, such as extracting sources from their reverberation, BSS shares a 

similar objective as PAE and hence can be applied in PAE [SRK12]. 

Despite the recent advances in BSS and PAE, the challenges due to the 

complexity and uncertainty of the sound scenes still remain to be resolved. One 

common challenge in both BSS and PAE is the increasing number of audio 

sources in the sound scenes, while only a limited number of mixtures (i.e., 

channels) are available. In certain time-frequency representations, the sparse 

solutions in BSS and PAE would require the sources to be sparse and disjoint 

[PBD10]. Considering the diversity of audio signals, finding a robust sparse 

representation for different types of audio signals is extremely difficult. The 

recorded or post-processed source signals might even be filtered due to physical 

or equivalently simulated propagation and reflections. Moreover, the audio 

signals coming from adverse environmental conditions (including reverberation, 

and strong ambient sound) usually degrade the performance of the 

decomposition. These difficulties can be addressed by studying the features of 

the resulting signals and by obtaining more prior information on the sources, 

the sound environment, the mixing process [VBG14], and combining auditory 

information with visual information of the scene. 

 

7.5 Individualization of HRTF 

Binaural technology is the most promising solution for delivering spatial 

audio in headphones, as it is the closest to natural listening. Unlike conventional 

microphone recordings, which are meant for loudspeaker playback, the binaural 

signals are recorded or synthesized at the ears of the listener. In a binaural audio 
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system, the spatial encoding (i.e., HRTFs) should encapsulate all the spectral  

features due to the interaction of the acoustic wave with the listener’s 

morphology (torso, head, and pinna). The pinna, which is also considered as the 

acoustic fingerprint, embeds the most idiosyncratic spectral features into 

HRTFs, which are essential for accurate perception of the sound (Fig. 7.4). 

Thus, the HRTF features of the individuals are extremely unique, as shown in 

Fig. 7.5. Often the HRTFs used for virtualization are non-individualized HRTFs, 

typically measured on a dummy head, since they are easily accessible. 

However, the use of non-individualized HRTFs leads to several artifacts 

such as in-head localization, elevation localization confusions, front-back, 

up-down reversals and inexact location of the auditory image [WAK93]. Thus, 

individualization of the HRTFs plays a critical role to create an immersive 

experience closest to the natural listening experience. There are various 

individualization techniques to obtain the individualized HRTFs from 

acoustical measurements, anthropometric features of the listener, customizing 

generic HRTFs with perceptual feedback or frontal projection of sound, as 

summarized in Table 7.3.  

 

 

Figure 7.4 Human ears act as a natural filter in physical listening.  
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 7.5.1 Acoustical measurements  

The most straightforward individualization technique is to actually measure 

the individualized HRTFs for every listener at different sound positions 

[MSH95], [XLS07]. Several examples of HRTF measurement setups are shown 

in Fig. 7.6. This is the most ideal solution but it is extremely tedious and 

involves highly precise measurements. These measurements also require the 

subjects to remain motionless for long periods, which may cause fatigue to the 

subjects. Zotkin et al. developed a fast HRTF measurement system using the 

technique of reciprocity, where a micro-speaker is placed into the ear and 

several microphones are placed around the listener [Nic10]. Other researchers  

 

Figure 7.5 The vast variation of the HRTF spectrum at high frequencies of the 

various subjects from CIPIC database and the MIT KEMAR dummy head 

database [XLS07]. This is due to the idiosyncratic nature of the pinna.  
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developed a continuous 3D azimuth acquisition system to measure the HRTFs 

using a multichannel adaptive filtering technique [Enz09]. Interpolation 

techniques are also employed to synthesize the HRTFs for the directions not 

measured [Gam13], [Rom12]. However, all these techniques to measure the 

Table 7.3 Comparison of the various HRTF individualization techniques 

How to obtain 

individual features 
Techniques Pros Cons 

Performance and 

remarks 

Acoustical 

Measurements 

Individual measurements 

[MSH95],  

IRCAM  France, CIPIC, 

Univ. of Maryland, 

Tohoku Univ, Nagoya 

Univ., Austrian Academy 

of Sciences, etc. [XLS07]   

Ideal, accurate 

Requires high 

precision; 

tedious; 

impractical 

for every 

listener 

Reference for 

individualization 

techniques 

Anthropometric 

data 

Optical Descriptors: 3D 

mesh, 2D pictures [Nic10] 

Based on 

acoustic 

principles; 

studies the  

effects of 

independent 

elements of the 

morphology 

Need a large 

database; 

Tedious; 

Requires 

high 

resolution 

imaging; 

Expensive 

equipment; 

Qualified 

users  

Uses the 

correlation 

between individual 

HRTF and 

anthropometric 

data 

Analytical or numerical 

Solutions: 

PCA + multiple linear 

regression [XLS07] 

Finite element method, 

boundary element method 

[XLS07], [Nic10], 

Multiway array analysis 

[RDS10], Artificial neural 

network [XLS07] 

Structural model of 

HRTFs [Nic10], HRTF 

database matching 

[ZHD03] 

Listening/ 

Training 

Selection from 

non-individualized HRTF 

[Nic10], Frequency scaling 

[Mid99], training 

[MCD12] Easy to 

implement; 

directly relates 

to perception 

Takes time; 

requires 

regular 

training; 

causes fatigue  

Obtains the best 

HRTFs 

perceptually  

Tune magnitude spectrum 

[TaG98], [Nic10], Active 

sensory tuning [XLS07], 

PCA weight tuning 

[FiR12], [FiR15] 

Select cepstrum 

parameters [BBL06] 

Playback Mode 
Frontal projection 

headphone [STG13] 

No additional 

measurement, 

listening 

training 

New 

structure; not 

applicable to 

normal 

headphones; 

Type-2 

equalization  

Automatic 

customization, 

reduced front-back 

confusions 

Non-individualized 

HRTF 
Generalized HRTF 

Easy to 

implement 

Not accurate; 

Poor 

localization 

Not an 

individualization 

technique 
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individual HRTFs acoustically require a large amount of resources and 

expensive setups. 

7.5.2 Anthropometric data 

Individualized HRTFs can also be modelled as weighted sums of basis 

functions, which can be performed either in the frequency or spatial domain. 

The basis functions are usually common to all individuals and the 

individualization information is often conveyed by the weights. The HRTFs are 

essentially expressed as weighted sums of a set of Eigen vectors, which can be 

derived from PCA or ICA [XLS07], [Nic10]. The individual weights are 

derived from the anthropometric parameters that are captured by optical 

 

Figure 7.6 Examples of various setups to measure HRTF directly (pictures 

obtained online) 

 

 



182 

 

descriptors, which can be derived from direct measurements, pictures or a 3D 

mesh of the morphology [Nic10], as shown in Fig. 7.7. The solution to the 

problem of diffraction of an acoustic wave with the listener’s body results in 

individual HRTFs. This solution may be obtained by analytical or numerical  

methods, such as the boundary element method (BEM) or the finite element 

method (FEM) [Nic10], [XLS07]. Other methods used include multiple linear 

regressions [XLS07], multiway array analysis [RDS10], and artificial neural 

networks [XLS07]. The inputs to these methods can be a simple geometrical 

primitive [DAT02] (e.g., a sphere, cylinder or an ellipsoid), a 3D mesh obtained 

from MRI or laser scanner or a set of 2D images [Nic10]. An important 

advantage of these techniques is that the relative effects of a particular 

 

Figure 7.7 Numerical computation of HRTF using 3D meshes (picture 

extracted from [UoS15]) 
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morphological element (e.g., torso, head, and pinna) and their variation with 

size, location and shape can be independently investigated [Nic10]. One of the 

major challenges today to numerically model the HRTF is the very high 

resolution of imaging techniques required for accurate prediction of HRTFs at 

high frequencies. The required resolution of the mesh imaging depends on the 

shortest wavelength, which is around 17mm at 20 kHz [Nic10]. Moreover, 

obtaining these optical descriptors demands for the use of extremely expensive 

laser, MRI scanners, and also requires highly skilled qualified users.  

 Another type of technique used a simple customization technique, where a 

HRTF is synthesized based on the matching or training of certain 

anthropometric features [ZHD03], [HZM08], [LiH13], [GrV07], [MDZ03], 

[SGA13], [ScK10], [HCT10], [LZD13], [HuG10], [BAT14], [Tas14], as 

illustrated in Fig. 7.8. The relationship can be trained between the 

anthropometry database and the corresponding HRTF database [ZHD03], 

[HZM08], [LiH13], where dimensionality reduction of HRTF database and 

selection of anthropometric features are critical [HZM08]. To avoid these 

difficulties, Tashev el at [BAT14], [Tas14] proposed an indirect anthropometry 

based HRTF individualization method. Instead of training the relation between 

HRTFs and anthropometry, their method obtains a sparse representation for the 

anthropometry of a new person using the anthropometry of the training subjects. 

This sparse representation is then used to synthesize the HRTFs of the new 

person using the HRTFs of the corresponding training subjects. Our study in 

[HGT15d] revealed that the use of preprocessing and post-processing methods 

plays an important role in affecting the performance of HRTF individualization. 
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7.5.3 Perceptual feedback 

Several attempts have been carried out to personalize HRTF from a generic 

HRTF database using perceptual feedback, as shown in Fig. 7.9. Subjects select 

the HRTFs through listening tests, where they choose the HRTFs based on the 

correct perception of frontal sources and reduced front-back reversals [TaG98], 

[SeF03], [MSC12], [MCD12], [Nic10]. Listeners can also adapt to the 

non-individualized HRTF by modifying the HRTFs to suit his or her perception. 

Middlebrooks observed that the peaks and notches of HRTFs are frequency 

shifted for different individuals and that the extent of the shift is related to the 

size of pinna [Mid99]. Listeners often tune the spectrum until they achieve a 

good and natural spatialization [Nic10]. Other techniques involve active 

sensory tuning [XLS07], and tuning the PCA weights [FiR12], [FiR15] to 

individualize the HRTFs. These perceptual based methods are much simpler in 

terms of the required resources, and effort compared to the individualization 

methods using acoustical measurements or anthropometric data. However, these 

listening sessions can sometimes be quite long and result in listener fatigue.  

Individualization

Anthropometry database

HRTF database

Anthropometry 

of a new person
HRTF of the 

new person

 

Figure 7.8 Obtaining individualized HRTF using anthropometry 
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7.5.4 Frontal projection playback  

More recently, a study by Sunder et al. [STG13] customized the 

non-individualized HRTFs using a frontal projection headphone, as illustrated 

in Fig. 7.10. By projecting the sound from the front, the idiosyncratic frontal 

pinna spectral cues of the listener are captured inherently during the playback 

[STG13]. The idiosyncratic high frequency pinna cues captured in the frontal 

projection headphones response match well with the frontal HRTF cues, giving 

it a better frontal perception (with front-back reversals reduced by almost 50%). 

The advantage of this technique is that it does not require any measurements, 

training or the anthropometric data of the listener. However, the frontal 

projection individualization technique has been limited to only the horizontal 

 

Figure 7.9 Academic and industrial examples of HRTF individualization based 

on training/tuning. 
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plane and also requires a special kind of headphone equalization (i.e., Type-2, 

discussed in Section 7.6).  

As discussed in Section 7.3, head tracking is important in the virtualization 

process.  It was found that head tracking, when used with non-individualized 

HRTFs, can improve the localization [BWA01]. However, head tracking 

primarily helps in reducing the front-back confusions and has minimal effect in 

reducing the elevation localization errors, in-head localization [BWA01], and 

coloration caused by non-individualized HRTFs. Since individualization of 

HRTFs can alleviate some of these limitations, it is suggested that head tracking 

be used with individualized rendering. 

To sum up, there is a noticeable trend to achieve more and more accurate 

individualization with lesser data, complexity and effort. However, the effect of 

individualization of HRTFs can be hindered by the presence of the headphone. 

Hence, the headphone has to be compensated to ensure that the spectrum at the 

eardrum has only the individualized HRTF features. Additionally, equalization 

of the binaural recording itself may be necessary in certain applications (e.g., 

 

Figure 7.10 A geometric view of front emitter 
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musical recordings). The challenges and methods of equalization for both 

binaural and stereo recordings are explained in the Section 7.6. 

 

7.6 Equalization 

Headphones are not acoustically transparent as they not only color the 

sound that is played from the headphone but also affect the free-air 

characteristics at the ear. Typically, the HPTF comprises of the headphones 

transducer response and the acoustic coupling between the headphones and the 

listener’s ears, as illustrated in Fig. 7.11. To compensate for the headphone 

response, the HPTF is first measured at the same point where the recording was  

carried out at the blocked ear canal or at the eardrum [MHJ95]. The binaural 

recording is then de-convolved with the HPTF to eliminate the effect of the 

recording microphones and the headphone. This type of direct equalization is 

known as the “non-decoupled” mode of equalization [LJV98]. This method is 

often used when the HPTF is measured with the same measurement setup as the 

recording and particularly works well when the HPTF measurement and 

recording are carried out on the same dummy head.  

It is observed that, headphone equalization is critical in reducing the 

front-back reversals and elevation localization errors, and improve 

externalization [Beg00], [XLS07], [Nic10]. However, headphone equalization 

is challenging since the HPTF depends on individual morphology 

(headphone-ear coupling). Another difficulty in carrying out accurate 

headphone equalization is the variability of the HPTFs with repositioning 

[KuC00]. The positional dependency can only be reduced by taking the average 
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of a number of trials as a representative HPTF [KuC00]. Thus, to create a 

convincing immersive sound environment, use of individualized HRTFs and 

individualized equalization is entailed, which may not be viable all the time. To 

reduce the dependency on individualized equalization, Sunder et al. [STG13] 

designed a Type-2 equalization technique for the playback through frontal 

projection headphone, which is independent of the headphone-ear coupling. 

Unlike the conventional equalization technique, Type-2 equalization 

compensates only for the distortion due to the emitter, thereby preserving the 

individual pinna cues due to frontal projection. 

The other type of equalization is the “decoupled” equalization technique 

and it is the most commonly used method of equalization for rendering music. 

In this technique, the binaural recording (BIR or HRTFs) as well as the 

headphone are equalized using a reference sound field [LJV98]. If the reference 

sound field (REF) of the recording environment is well known and reproduced 

reliably, this method of equalization can result in a very natural perception of 

sound similar to the non-decoupled equalization technique. This method of 

equalization is mainly carried out to make the binaural recordings compatible 

with stereophonic (conventional microphone) recordings in terms of timbral 

 

Figure 7.11 A breakdown of Headphone transfer function 
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quality. Some of the commonly used reference fields are: free-field (FF), 

diffuse-field (DF), and other more realistic reference fields including modified 

FF [OWM13], modified DF [MJH95], as well as RR_G and RR1_G proposed 

by Olive et al. [OWM13]. Ideally, the best reference field that preserves the 

true quality of the recording would be the field where the recording is carried 

out.  

Furthermore, the choice of headphones can also greatly affect the 

transparency of the binaural rendering even with the correct headphone 

equalization. The external ear is un-hindered in the natural listening conditions, 

where the sound pressures at the ear are governed by free-air characteristics. 

With headphones placed over the ear, the pressure characteristics of the sound 

arriving at the eardrum are greatly affected compared to the free-air 

characteristics due to the interaction between the external ear and the 

headphone enclosure. The closer the coupling characteristic of the headphones 

with that of the free-air, the more accurate and transparent is the reproduced 

sound. Such headphones are defined as FEC (free-air equivalent coupling) 

headphones [MHJ95]. It is important to note that the FEC condition for the 

headphone is necessary only for binaural recordings made at the blocked ear 

canal, which is also the most common technique for individualized binaural 

recording [MHJ95].  

 

7.7 Integration 

An integration of these signal processing techniques for natural sound 

rendering reviewed in this chapter is depicted in Fig. 7.12. The original sound 
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sources along with their environmental information are represented as a sound  

mixture after the mixing process. The sound scenes from the mix are then 

decomposed into primary components (sources) and/or ambient components 

(environment) using BSS and/or PAE. The extracted primary components, 

which are basically directional sound sources as perceived by the listener, can 

be rendered using (individualized) HRTFs [Beg00]. Ambient components are 

rendered in a manner so as to recreate a natural sound environment. Modelling 

the acoustics of the natural sound environment by adding the correct amount of 

early reflections and reverberation also helps in enhancing the perception of the 

sound environment as well as veridical distance, which is critical for natural 

listening. Moreover, a suitable individualization technique has to be applied to 

the directional sources such that the rendered sound scenes played over 

headphones are maximally tailored for the individual listener. Meanwhile, use 

of a robust equalization technique can significantly reduce the adverse 

coloration of the source. Finally, the influence of the head movements on the 
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Figure 7.12  Natural sound rendering system for headphones: an integration of 

all the signal processing techniques reviewed in this chapter.  
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rendered sound can be taken into account by incorporating head tracking in 

virtualization. 

In general, natural sound rendering requires both the spatial and timbral 

quality of the reproduced sound to be realistic. For digital media content that 

contains plenty of spatial cues (e.g., movies, games), all the five techniques 

reviewed are important in creating a sense of immersiveness. For other content, 

where the timbral quality is of utmost importance (e.g., music recordings), a 

subset of the techniques (e.g., individualization, equalization) are sufficient in 

natural sound rendering.  

  

7.8 Subjective evaluation using 3D audio headphones 

Subjective experiments were carried out to validate the reviewed natural 

sound rendering system by comparing it with the conventional stereo playback 

system. A total of 18 subjects (15 males and 3 females), who were all between 

20-30 years old, participated in this listening experiment. None of the subjects 

reported any hearing loss. The test was conducted in a semi-anechoic listening 

room at NTU, Singapore. The two systems of headphone listening tested in this 

experiment were:  

 

Figure 7.13 Natural sound rendering for 3D audio headphones 

 



192 

 

(i) Conventional stereo system. The materials are directly played back 

over headphones without any processing. 

(ii) Natural sound rendering system. The signal processing techniques 

introduced in this chapter were applied to the audio content. In this study, we 

chose PAE as the sound scene decomposition method since our primary interest 

lies in movie and gaming audio content that contains the individual sound 

sources and the sound environment [HTG14]. Based on the recommendation in 

Chapter 3, least-squares is the selected PAE approach and the time-shifting 

technique discussed in Chapter 5 is employed. Individualization is carried out 

by frontal projection headphone since it inherently embeds the personal pinna 

cues during playback and does not require any individual acoustical 

experiments, anthropometric data or training [STG13]. To fully exploit the 

frontal projection in the natural sound rendering, we have developed a new 

four-emitter headphone [GaT14] that houses a frontal emitter and a 

conventional side emitter in each ear cup of the headphone [STG13]. In the 

virtualization process, the frontal emitters are used to render the directional 

sources, while all the emitters (both frontal and side) are used to render the 

sound environment. Type-2 EQ is applied to the frontal emitters for source 

rendering [STG13], and diffuse-field EQ is used to render environment signals 

over all the emitters. Head tracking has not been incorporated in this system. 

Fig. 7.13 indicates the specific natural sound rendering techniques for 3D audio 

headphones. 

The stimuli used in this experiment were binaural (motorcycle in a storm 

and bee at a waterfall), movie (Brave, Prometheus), and gaming tracks 

(Battlefield 3), which contain plenty of spatial cues. Each track was played back 
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using the two headphone playback systems tested here. The tracks 

corresponding to the two systems were named “A” and “B” and played back in 

a random order. The listening tests were conducted in a double-blind manner, 

where both the experimenter and the subjects were unaware of the order of the 

stimuli. In this experiment, four audio quality measures were considered to 

evaluate the performance of the two systems. Their descriptions are given 

below:  

1. Sense of direction: how clear or distinct are the perceived directions of 

the sound objects? 

2. Externalization: how clear is the stimulus perceived outside the head? 

3. Ambience: how clear and natural is the ambience of the sound 

environment perceived? 

4. Timbral quality: how realistic is the timbral quality of the sound? 

Subjects were asked to give the scores for the four measures for each of the 

two tracks “A” and “B”. The scores were based on a 0-100 scale where subjects 

rated 0-20 (Bad), 21-40 (Poor), 41-60 (Fair), 61-80 (Good), and 81-100 

(Excellent). Finally, the subjects were also required to indicate their overall 

preference for the two tracks by selecting one of the following three choices: 

“Prefer A”, “Not sure”, or “Prefer B”. To carry out this experiment, a GUI was 

created which randomized the order of the stimuli and automatically stored the 

responses of the subjects in a file. 

The responses of the subjects were analyzed for both sound rendering 

systems. Fig. 7.14 shows the overall comparison between the two systems in 

terms of the mean opinion score (MOS), scatter plot and the overall preference 

of the subjects. In Fig. 7.14(a), MOS of the four measures for the two systems 
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were computed across all the 18 subjects and five stimuli. While the MOS for  

the conventional stereo system for all the measures were around 60, the natural 

sound rendering system performed much better with MOS of over 70. An 

analysis of variance (ANOVA) was conducted to generalize these results to the 

whole population of listeners. The p-values were found to be very small (<< 

0.01) for all the measures, indicating that the improved performance of the 

natural sound rendering system over the conventional stereo system is 

statistically significant. The scatter plot in Fig. 7.14(b) implies that most of the 

subjects gave a higher score for the natural sound rendering system for all the 

four measures. The overall preference of the subjects across all the five tracks is 

shown in Fig. 7.14(c). The pie chart suggests that 61% of the subjects preferred 

the natural sound rendering, whereas only 33% preferred the conventional 

stereo rendering. 

To sum up the subjective test results, we found that the natural sound 

rendering system using the various signal processing techniques explained in 

this chapter enhances the listening experience compared to a conventional 

  

Figure 7.14 Results of the subjective experiments: (a) MOS, (b) scatter plot, 

and (c) overall preference. 
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stereo system. Additionally, the presence of head tracking in the system will 

only improve the natural sound rendering as observed in several studies 

[BWA01].  

 

7.9 Conclusions and future directions 

With the advent of low cost, low power, small form factor, and high speed 

multi-core embedded processor, we can now implement the above signal 

processing techniques in real-time and embed processors into the headphone 

design. However, various implementation issues regarding the computation cost 

of sound scene decomposition, HRTF/BRIR filtering in virtualization, and 

equalization as well as the latency in head tracking should be carefully 

considered. One example of such a natural sound rendering system is the 

four-emitter 3D audio headphone [GaT14] developed at the DSP Lab in NTU. 

This system has been psychophysically validated and found to perform much 

better than the conventional stereo headphone playback system. 

Besides the five types of techniques discussed in this chapter, there have 

been other efforts to enhance the natural experience of headphone listening. To 

enable the natural pass through of the sound from outside world without 

coloration, headphones can be designed with suitable acoustically transparent 

materials. When this is not effective, microphones integrated into headphones 

and associated signal processing techniques, such as equalization [HJT04] , and 

active noise control (ANC) [ScA05], are employed. The headphones with 

built-in microphones open a new dimension to augment the listening experience 

with the physical world [VFR15].  
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The future of headphones for assistive listening applications would be the 

one where listeners cannot differentiate between the virtual acoustic space 

created from headphone playback and the real acoustic space. This would 

require the combined effort from the whole audio community from the 

headphone manufacturers, sound engineers to audio scientists. More 

information about the content production has to be distributed from the content 

developers to the end user to enhance the extraction process. Moreover, 

obtaining and exploiting every individual’s anthropometrical features or hearing 

profiles is crucial for a natural listening experience. Finally, with more sensors, 

such as GPS, gyroscopes, and microphones that can be integrated into 

headphones, future headphones are becoming more content-aware, 

location-aware, listener-aware, and hence more intelligent and assistive. 
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Chapter 8 

Conclusions and Future Works 

 

In this chapter, we will summarize this thesis with conclusions drawn from 

our works as well as future works to be carried out as an extension of the thesis. 

8.1 Conclusions 

Spatial audio reproduction is essential in creating immersive and authentic 

listening experience, as per the increasing need from the consumer market. 

Primary ambient extraction can be applied in spatial audio reproduction to 

alleviate the rigorous requirements of the channel-based audio format on the 

audio reproduction system configuration. Thereby, PAE facilitates flexible, 

efficient, and immersive spatial audio reproduction. With the PAE approaches 

proposed for signals in the ideal case, little work has been carried out to study 

PAE for more practical real-world signals encountered in digital media content. 

Thus, spatial audio reproduction based on PAE was investigated in this thesis 

on the following five aspects. 

First, a comprehensive study on existing PAE approaches was carried out. 

Our observations on existing PAE approaches like PCA, least-squares led us to 

a unified linear estimation framework, where the extracted (primary or ambient) 

components can be estimated as a weighted sum of the input signals. 

Furthermore, in order to quantify the objective performance of PAE, we 
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introduced two groups of performance measures, namely, the measures for 

extraction accuracy and measures for spatial accuracy. For extraction accuracy, 

we identified three types of errors that contribute to the extraction error: the 

distortion, the interference, and the leakage. Dividing the extraction error into 

these three parts helps us understand the performance of PAE approaches. With 

the objectives of minimum leakage, minimum distortion, and adjustable 

performance, three variants of the least-squares method were proposed. The key 

relationships and differences among these linear estimation based PAE 

approaches were established in this thesis. Comparatively better performance 

was found in primary component extraction than in ambient component 

extraction, where primary power ratio also plays an important role. As a result 

of this comparative study, guidelines and recommendations on selecting the 

more suitable PAE approaches for various spatial audio reproduction 

applications were suggested. 

Secondly, a novel ambient spectrum estimation (ASE) framework was 

proposed to improve the performance of PAE, especially when the ambient 

power is strong. Based on the relation of equal magnitude of ambient 

components in two channels, the ASE framework can be analyzed from two 

perspectives, i.e., ambient phase estimation (APE), and ambient magnitude 

estimation (AME). Equivalence between APE and AME was verified. The 

sparsity constraint of the primary components was employed in this thesis to 

solve the ASE problem, leading to two PAE approaches, APES, and AMES. To 

improve the computational efficiency, an approximate solution to the ASE 

problem with sparsity constraint, known as APEX, was further proposed. With 

the aim to apply the evaluation framework of extraction accuracy (as introduced 
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earlier) in PAE approaches without analytical solutions (as is the case with 

these ASE approaches), an optimization method was proposed. It was evident 

from our objective and subjective experiments that the ASE approaches can 

improve the performance of PAE with 3-6 dB less extraction error (all cases, on 

average) and closer spatial cues. Furthermore, the experiments with variant 

ambient magnitude difference indicated the robustness of the ASE approaches. 

Thirdly, when dealing non-ideal signals (signals that do not fit the signal 

model), we observed a significant performance degradation using conventional 

PAE approaches. One of the most often occurring case is the primary-complex 

case where the primary components are partially correlated at zero lag. The 

performance degradation generally increases as primary correlation decreases. 

Therefore, a time-shifting technique was proposed to maximize the primary 

correlation prior to PAE. Overlapped output mapping is introduced to alleviate 

the frame boundary switching artifacts due to varied time-shifting amounts. 

Simulations using synthesized signals and real recordings showed that the 

time-shifting technique can greatly enhance the performance PAE with around 

50% lower extraction error and much more accurate spatial cues. Furthermore, 

the time-shifting technique can be seamlessly incorporated into any existing 

PAE approaches. 

Fourthly, it is possible to encounter even more complex signals when 

dealing with actual sound scenes from digital media, where multiple concurrent 

dominant sources pose a challenge for PAE. Our study revealed that 

multi-shifting technique with ICC based weighting and subband technique with 

adaptive frequency bin partitioning could enhance the PAE performance with 

multiple sources. 
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Lastly, we discussed how PAE can be applied in spatial audio reproduction 

over headphones. Differences between headphone listening and natural 

listening were examined, which leads to a natural sound rendering paradigm for 

headphones. Five types of signal processing techniques, including PAE based 

sound scene decomposition and HRTF individualization, were discussed and 

integrated in the natural sound rendering system. Finally, an example of 3D 

audio headphones that implements the natural sound rendering was evaluated 

using subjective listening tests, which achieved a significant performance 

improvement over conventional headphone playback. 

 

8.2 Future works 

Through the investigations of PAE approaches reported in this thesis, there 

are several interesting future works that can be further explored, which are 

suggested as follows: 

Firstly, the performance of various PAE approaches is only studied in the 

ideal case. In the non-ideal cases, only the performance of PCA is analyzed. 

Therefore, it is also interesting and beneficial to understand how the 

performance varies for the other PAE approaches. Some interesting results from 

this study could shed lights on how to design more specific techniques to 

improve the performance of PAE in non-ideal cases.  

Secondly, it is commonly known that for spatial audio evaluation, timbre 

quality and spatial quality are two important aspects. Previous studies from 

Rumsey et al. showed that it is possible to combine the two aspects [RZK05]. 

Yet, it is unknown whether the model developed in [RZK05] is applicable to 
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PAE. Hence, one future work would involve extensive subjective listening tests 

to understand the relative importance of the timbre and spatial quality in PAE 

applications. Furthermore, considering that conducting subjective tests to 

evaluate all the PAE approaches is very tedious and impractical, objective 

evaluation is more preferred. Therefore, the relations between the subjective 

quality and objective quality would lead to a more meaningful and reliable 

objective evaluation. Besides, evaluation of PAE approaches in a more specific 

spatial audio reproduction application could help us understand the final 

performance of these PAE approaches. 

Thirdly, further studies can be extended based on our ambient spectrum 

estimation (ASE) framework. In the current study, only the sparsity constraint 

is employed. Employing other constraints, such as the diffuseness of the 

ambient components and the independence between primary and ambient 

components, could improve the performance of PAE (or the performance in 

certain cases). Probabilistic approaches could be developed to model the 

ambient magnitude variations better. 

Fourthly, more work still has to be carried out for complex signals in PAE. 

For those signals with multiple dominant source, we could further combine the 

multi-shift technique with the subband technique, which might lead to an 

optimal filtering method. Moreover, blind source separation techniques could 

be incorporated into PAE to separate the multiple sources. On the other hand, 

more comprehensive study shall be carried out on PAE for multichannel 

signals. 

Lastly, PAE is a blind process, which implies that its performance relies 

heavily on how effective the signal model is. Due to the complexity of the 
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actual sound scenes, not one signal model could satisfy any audio content. 

Therefore, machine learning techniques could be introduced to solve the PAE 

and spatial audio reproduction problem, thanks to the vast amount of digital 

media data. Furthermore, real-time implementation of the PAE approaches for 

spatial audio reproduction applications shall also be seriously considered.  
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Appendix A: Derivation of Simplied Solution 

for PCA based PAE 

In the following, we show the derivations for the extracted primary component 

in channel 0. From (3.8) and (3.20), we can find 
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Based on (A.1), we can rewrite (3.21) as 
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Substitute (A.3) into (3.22),  
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Substitute (A.2) into (A.4),  
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Thus, we obtain the simplified expression of the extracted primary component 

in channel 0, as shown in (3.23). The primary component in channel 1 and 

ambient components can also be derived in the same way. 
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Appendix B: Subjective Listening Tests for 

PAE  

In this appendix, we show the MATLAB GUI screenshots (Fig B.1) and 

written guidelines that were presented to the participants of the subjective 

listening tests conducted to evaluate the perceptual performance of different 

PAE approaches. Some results of the listening tests are reported in Chapter 4. 

 

 

 

Figure B.1Two screenshots of the MATLAB GUI 
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Guidelines for listening tests (timbre quality) 

 

This listening test aims to rate the quality of a set of signals produced by 

primary-ambient extraction systems. Primary-ambient extraction aims to extract the primary 

components and ambient components from a mixture of them. The resulting signals may 

include several types of degradations compared to the clean target signals, which mainly 

includes distortions of the target signal, and residual leakage from other undesired signals. 

 

During the test, you will be asked to address 3 successive tasks (6 sub-tasks): 

1. Rate the global quality compared to the reference for each test signal (tasks 1-2); 

2. Rate the quality in terms of preservation of the target signal in each test signal 

(tasks 3-4); 

3. Rate the quality in terms of suppression of other undesired signals in each test 

signal (tasks 5-6). 

 

For each task, the test will involve a training phase and an evaluation phase. 

 

During the training phase, you will have to listen to all the sounds to 

• train yourself to address the required task and learn the range of observed quality 

according to that task; 

• set the volume of your headphones so that it’s comfortable but you can clearly hear 

differences between sounds (the volume can’t be changed later on). 

 

The evaluation phase involves 6-8 trials. In each trial, you will have to rate the quality 

of 6 test sounds compared to a reference sound (clean target) on a scale from 0 to100, where 

larger ratings indicate better quality. You can listen to the sounds as many times as you 

want. You should make sure that 

• the ratings between pairs of sounds are consistent, i.e. if one sound has better 

quality than another, it should be rated higher, 

• the ratings between different experiments are consistent, i.e. if two sounds 

from different experiments have the same quality, they should be rated equally, 

• the whole rating scale is used, i.e. sounds with perfect quality (as compared to the 

reference signal) should be rated 100 and the worst test sound over all experiments 

(but not necessarily the worst test sound in each experiment) should be rated 0. 

 

The expected total duration of the test is 30 minutes. You can make short breaks 

between each two trials. Feel free to contact the experimenter whenever you have any 

doubts or need any assistance. Thank you for your participation. 
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Guidelines for listening tests (spatial quality) 

 

This listening test aims to rate the quality of a set of signals produced by primary-ambient 

extraction systems. Primary-ambient extraction aims to extract the primary components and 

ambient components from a mixture of them. The resulting signals may include inaccurate 

spatial perception as compared to the clean target signals. 

 

During the test, you will be asked to address 3 successive tasks according to these two 

criteria: 

4. Rate the quality in terms of the perception of direction (able to localize the 

sound from the same direction) as compared to the reference signal (task 1); 

5. Rate the quality in terms of perception of diffuseness (feeling of the sound 

coming from any directions) as compared to the reference signal (tasks 2-3); 

 

For each task, the test will involve a training phase and an evaluation phase. 

 

During the training phase, you will have to listen to all the sounds to 

• train yourself to address the required task and learn the range of observed quality 

according to that task; 

• set the volume of your headphones so that it’s comfortable but you can clearly hear 

differences between sounds (the volume can’t be changed later on). 

 

The evaluation phase involves 6 experiments. In each experiment, you will have to rate the 

quality of 6-8 test sounds compared to a reference sound (clean target) on a scale from 0 

to100, where larger ratings indicate better quality. You can listen to the sounds as many 

times as you want. You should make sure that 

• the ratings between pairs of sounds are consistent, i.e. if one sound has better 

quality than another, it should be rated higher, 

• the ratings between different experiments are consistent, i.e. if two sounds 

from different experiments have the same quality, they should be rated equally, 

• the whole rating scale is used, i.e. sounds with perfect quality (as compared to the 

reference signal) should be rated 100 and the worst test sound over all experiments 

(but not necessarily the worst test sound in each experiment) should be rated 0. 

 

The expected total duration of the test is 15 minutes. You can make short breaks between 

each two experiments. Feel free to contact the experimenter whenever you have any doubts 

or need any assistance. Thank you for your participation. 
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Appendix C: Subjective Listening Tests for 

Natural Sound Rendering Headphone 

System 

In this appendix, we show the GUI screenshot (Fig. C.1) and written 

guidelines presented to the participants of the subjective listening tests 

conducted to evaluate the two headphone rendering systems as discussed in 

Chapter. Table B.1 shows the specifications of the five audio/video tracks used 

in this experiment. The results of the listening tests are reported in Chapter 7. 

 

Table C.1 Specifications of five audio/video tracks 

# Type Track Duration 

1 
Binaural audio track 

Motorcycle in the storm 1:07 

2 Bee at the waterfall 0:20 

3 
Movie video track 

Brave 2:59 

4 Prometheus 2:24 

5 Gaming video track Batterfield 3 1:49 

 

 

Figure C.1 A screenshot of the GUI designed for the headphone listening test 



220 

 

 

 

Instructions 

Thank you for participating in this experiment. 

 

There are 5 sessions. In each session, there is a video with two sound tracks (A, B). Listen 

to A and B and give your scores based on the each of the following 4 criteria: 

 

1. Sense of direction: how clear can you perceive the directions of the sound objects? 

 

2. Externalization:      how clear can you perceive the sound coming from outside your 

head? 

 

3. Ambience:              how clear can you perceive the ambience of the sound 

environment? 

 

4. Timbral quality:      how realistic is the sound? 

 

Finally, please give your preference between A and B. 

 

You can switch between A and B anytime, and give the score before the track ends. There is 

a number indication once you give the score.  

 

In case of the video and sound not sync, click the stop button of the player and then click 

the play button. 

Feel free to contact the experimenter if you have any doubts. Thanks. 


