Towards Resilient Cyber-Physical Control Systems

Gabriel Salles-Loustau, Saman A. Zonouz

Rutgers University – ECE department – 4N6 Research Group

Global SIP – 15 Dec. 2015

Cyber-Physical Critical Infrastructures

Infrastructures of

- Collaborating computational elements monitoring/controlling physical entities
- Essential for the functionality of the society and economy

Examples

• Electricity grid, water supply, gas/oil production, transportation systems, healthcare, automotive, safety-critical aerospace, etc.

Example: Power-grid Infrastructure

Growing Critical Infrastructure Attacks

ENERGY

Double threat: US grid vulnerable on two fronts

T Text Size 🖃 🛨

t was January 2010, and investigators with Atomic Energy Agency had just completed the uranium enrichment plant outside Nata when they realized that something was off rooms where thousands of centrifuges wer uranium.

technicians in white lab coats, gloves and blu g in and out of the "clean" cascade rooms, ha ges one by one, each sheathed in shiny silver

workers at the plant decommissioned dama e centrifuges, they were required to line them on to verify that no radioactive material was b evices before they were removed. The techni

"He had converted the television control into a device capable of controlling all the junctions on the line and wrote in the pages of a school exercise book where the best junctions were to move trams around and what signals to change.

> By Graeme Baker 12:01AM GMT 11 Jan 2008

Attack Surfaces

CPS Security Solutions

Trustworthy architectures

- Agencies recommendations: NIST, NERC
- Code verification: Trusted Safety Verifier

Online security assessment

- Contingencies assessment for security or safety, for cyber of physical system, multiple contingencies
- Contingencies response depending on threat levels

Cyber-Physical Attack Detection

- Specific to cyber or physical infrastructure
- Leverage sensors
- Few solutions focus on both aspects

Proactive Cyber-Physical Intrusion Tolerance

- Intrusion tolerance and automated response
- Attack-graph templates

Adapting the Security Model

- IT security models are well studied
 - Wide range of security models
 - Wide range of tools

- IT security models generally do not fit CPS
 - <u>Cost</u>: might not be possible in some scenarios (availability, real-time)
 - <u>Precision</u>: might not suit well physical threads (rogue commands)

Cyber System's Input-Based Detection Mechanism

- Tight dependency between the control center and the physical system
- Events on physical system corresponds to inputs given to the control center
 Operator input, configuration file change, PLC code change, etc

Cost: <u>deploy cost-optimal IT security sensors</u>

- Physical system model: architecture + specifications
- Validate safety features
- Analyze inputs as a vector for safety violation

Precision: Identify inputs that violate safety requirement of the physical entities

How it works

- Assumption
 - Periodic snapshots
 - System input logs
 - Safety verifier (TSV) acts as an IDS

Attack-Graph Templates

Essentially, a privilege escalation graph (i.e., DAG)

- States are subset of privileges held by the attacker
- State transitions are privilege escalations
 - Accomplished via a vulnerability exploitation

- AGT includes all possible (known and potentially-unknown) attack paths in the system
 - From the initial state, i.e., no-access
 - To the state with required privileges to cause an attack consequence, i.e., detection point

A Sample AGT

How it works

Intrusion Forensics: Example

Detection-Capability Matrix: System-sensors Tools Cost Comparison

Detection Policy	Symbol: Mechanism	Cost	Detector	
Information flow analysis	Tnt: Taint tracking	Very High	TEMU	
Input investigation	FW: Feature-based packet monitoring	Very Low	Firewalls	
	Snrt: Content-based packet monitoring (stateless)	Medium	Snort	
	App: Application-based IDS (stateful)	Medium	Secerno	
Execution monitoring	ClSt: Control Violation: call stack monitoring	High	callstack monitoring	
	CtFl: Control Violation: control flow integrity monitoring	High	Control-Flow Integrity	
	DtFl: Data Violation: data flow monitoring	Very High	MemCheck	
Consequence detection	AV: Malicious code: executable integrity checking	Low	ClamAV	
	Hst: Host-based detection systems	Low	Samhain	
	Stat: Statistical anomaly-based	Low	Zabbix	

Detection-Capability matrix of system detection tools

	ff IgPtr	tStr MC LLIn PHdr pRsp	lu nRc	Hor Jk PBnc	nFtg nVic	dDic
	Dng	HHCDC SSH	TcJ Syn	EKS	Wr Bln Rac	PwdD Encry
Tnt	HM	HMC L HCMM	LL	HHH	NNN	NN
FW	LN	LNNLNNLL	NN	LLL	NNN	MM
Snrt	MN	MMMMMMMM	NN	NNM	NNN	ΗH
App	ΗL	HHHHHLCC	NN	NNH	NNN	ΗH
ClSt	CM	HNNNNNN	NN	NNN	NNN	NN
CtFl	СН	HNNNNNN	NN	NNN	NNN	ΝN
DtFl	LL	LMCLHCMM	LL	HHH	NNN	ΝN
AV	NN	NNNMNNN	HH	NNN	LLL	NN
Hst	LL	LNNHNNNN	HH	NNH	MML	ΝN
Stat	MM	LNNLNNNN	NN	NNH	NNN	ΗH

Incident Response

- Based on the attack vector detected
 - Roll-back to the previous healthy state of the system
 - Deploy specific lightweight IPS tools
 - Etc

Conclusion

- Various threads are specific to cyber-physical system
- Security measures need to be adapted to the thread
 - For CPS, **safety** is a key feature
- Leverage the *dependence between physical and IT infrastructure*
 - Detection function as a safety check
 - Leverage performance of the IT system security tool
 - Low-cost root analysis and incident response via **Detection-Capability matrices**

Questions?