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Abstract—Electrical network frequency (ENF) has been used
as evidence for location forensic. To determine location, we need
accurate ENF information from noisy media files, select features
of the ENF signal and the classify it based on previous knowledge
of different grids.

In this report, we first utilize multiple harmonics in frequency
domain and an error correction method for accurate ENF
estimation. Utilizing multiple harmonics faces the challenges
of obtaining accurate signal to noise power ratio for weighted
combine, we propose to use signal level to noise level as weights.
Moreover, we exploit the fact that the ENF signal doesn’t jump
back and forth within a short period to design an error correction
method, which is capable to get rid of inaccurate ENF estimation.

Second, we propose to combine the features both in time
domain and frequency for grid classification. Based on the power
signal characteristics, we propose to use crest factor and the ratio
of first harmonic to the third harmonic to evaluate the distortion
of power waveform. Moreover, we propose to categorize the
signals based on nominal frequency and source type, and design
proper features for each category via cross validation method.
Our proposed classification scheme can achieve an accuracy rate
of 94% for practice dataset.

Third, we design and build a small yet effective sensing circuit
with accurate timing. We record 10 hours of data from both
home, university in different time. Using our proposed classifier,
we learnt that with confidence level of 47.6%, the waterloo grid
is part of grid C. Since the confidence level is low, we consider
waterloo grid belongs to ”None of Above Options”.

Below is our estimation for practice dataset with
accuracy 94% AHCFF,BGIND,AFBDI,INCAE,FBBAD,
CGNGB,DDCHG,EAIHI,EHECF,FCGEI.

Below is our estimation for test dataset with average confidence
level of 79.35%. NDDCD,NNDAF,ACGBG,BFCEH,GHNNG,
NFDAI,DNFNN,IECBD,ENIBE,FGCAG,
CINIG,HAEFC,CNFDG,CEIGI,EICEC,
BNBNA,DIFNG,AABIH,CCDBA,GBFBB

I. INTRODUCTION

Electrical network frequency (ENF) [2] has been exploited
to be used for location forensic. Two facts make this idea
promising. First, the ENFs for the regions with connected grid
are the same. Second, ENF can be captured in sound and video
recording. Thus, through extracting the ENF signal in a ransom
request call, it is possible to identify the caller’s location.

However promising, the wide adoption of ENF based lo-
cation forensic faces challenges, without proper addressing,
the performance of such a system may not be accepted.
First, sound and video files contain significant noise for ENF
extraction, making obtaining accurate ENF difficult. Second,
many regions have similar ENF characteristics, making the
classification based on ENF challenging.

In this project, we utilize multiple harmonics and propose to
use error correction scheme to improve the accuracy of ENF
estimation. Further, we propose to combine features in both
time domain and frequency domain to increase the distance
of different grids in feature space. Moreover, we propose to
categorize the signals before classification to improve both
efficiency and accuracy.

The reminder of this report is organized as follows. Section
II explains our approach in obtaining accurate ENF via utiliz-
ing multiple harmonics and error correction. Section III dives
into the details of feature selection and classification scheme.
Section IV explains the design of the sensing circuits and show
the ENF info for waterloo, ON. Section V summarizes this
report and draws conclusions.

II. EXTRACTION OF ENF SIGNALS

In this section, we propose to use weighted multiple har-
monics in frequency domain to improve accuracy in estimating
frequency information. Since the exact signal power and noise
power are unknown, we propose to use signal level to noise
level as weights to combine multiple harmonics. Moreover, we
exploit the fact that the ENF doesn’t change back and forth
within 15s to build an error correction scheme.

A. Multiple Harmonics Extraction

Extraction of multiple harmonics takes the following steps:
• Extract a segment of signal in time domain with fixed

duration Ts;
• Perform Discrete Fourier Transform (DFT) with Ns

point;
• Select the range of interests around kth (k =

1, 2, ..., kmax) harmonics. The range of the kth harmonic
is [k · (fbase − fr), k · (fbase + k · fr)].

Here, we perform the extraction procedures for segments of
fixed duration. The reason is that, to collect statistic informa-
tion of the ENF, the samples need to be homogeneous. Thus,
we obtain the ENF samples using fixed duration.

1) The choice of Ts : The duration Ts impacts the quality of
ENF. For one hand, the duration Ts determines the frequency
resolution. For DFT without zero padding, the frequency
resolution is determined by 1

Ts
. Thus, longer Ts is preferred to

improve frequency resolution. On the other hand, the duration
Ts determines the amount of independent segments can be
obtained from the original recorded signal. Let Tl denote the
total length of the recorded signal, the amount of independent
segments is Tl

Ts
. Thus, the larger the fixed duration Ts, the
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(a) Grid A: Ts = 5s
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(b) Grid C: Ts = 5s
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(c) Grid A: Ts = 50s
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(d) Grid C: Ts = 50s

Fig. 1: Impact of Frequency Resolution for DFT without
Zero Padding

smaller amount of independent segments. To obtain sufficient
number of independent samples for calculating statistical in-
formation, the fixed segment duration Ts should not be too
large. Considering above impacts, we set the fixed segment
duration to be 5s, namely Ts = 5s.

2) Zero-Padding for Higher Frequency Resolution: What
is the required frequency resolution? Since some grids are
very stable and have small variation in ENF, low frequency
resolution can make the variations in ENF unnoticeable. Fig.
1 shows the ENF signal of grid A and grid C under different
fixed duration time Ts, where Fig. 2(a) and Fig. 2(b) with
Ts = 5s and Fig. 1(c) and Fig. 1(d) with Ts = 50s. We can
observe that, given low frequency resolution such as 1./Ts =
0.2Hz, grid A and grid C have the same ENF signal, thus are
unable to distinguish. When resolution improves, the variation
on each grid can be seen in Fig. 1(c) and Fig. 1(d).

In this report, we first exploit zero padding for resolution
improvement. In order to reserve the frequency information
without zero padding, we set the zero padding length to be
zkFsTs, where zk is an integer number. In this way, the
frequency resolution is improved by zk times [3].

B. Weighted Combination

Combining multiple harmonics has been proposed to im-
prove the accuracy and robustness of frequency estimation [3].
The idea is what .... One of the major difficulty in combining
is to determine weights for combining. [2] proposed to use
average signal power to noise power as weights for harmonics
combining. Specially, [2] consider the power spectrum in
a range [fbase − fs, fbase + fs] belongs to signal, whereas
[fbase − fr, fbase − fs) ∪ (fbase − fs, fbase − fr] belongs to
noise. There is an issue with this approach in practice. It may
be difficult to determine the signal power range fs, especially
for the grid with large variations, such as grid B. If fs is chosen
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(a) Grid G: Snapshot of Freq. of Grid Signal
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(b) Grid G: Snapshot of Freq. of sound Signal

Fig. 2: Illustration of Signal Power Level to Noise Power
Level

too small, the actual signal power can be missed. On the other
hand, if fs is chosen too big, most noise will be considered
as signal, which eventually makes the weights calculation less
accurate.

To address the problem of unknown signal power range,
we propose to use signal power level to noise power level
as weights. The signal power level is the maximum PSD
in the [kfbase − kfr, kfbase + kfr] for the kth harmonics,
and the noise power level is the average of the PSD in the
[kfbase− kfr, kfbase + kfr] for the kth harmonics, excluding
the PSD of the signal. Fig. 2 shows examples of signal power
level and noise power level. This approach reduces the risk of
including too much noise power in signal power estimation.
Using this approach, part of signal power is calculated as noise
power, for signal power could be spread in frequency domain.
Yet, it is also reasonable, for bigger spread of signal power
in frequency domain means higher jitter, slewing or noise of
the original signal. Thus, our method can be considered as a
suitable indicator of signal quality in frequency domain.

The weights are updated every 15 minutes to adapt to the
change of the grid. The combining is performed at the highest
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harmonics. Since low harmonics have a smaller range, we use
spline interpolation to expand the frequency information for
smaller harmonics. The weights are chosen as the signal power
level to noise power level. Let fcmax denote the frequency
where the combined signal reaches its peak at the highest
harmonics. The ENF of current segment is set as fcmax/kmax,
where kmax is the highest number for harmonics.

1) Error Correction Coding: For the sound signal, our
proposed method could suffer from large noise power or
interference in a short period. In this case, the estimation will
demonstrate a case, where the ENF will jump up/down more
than 0.1Hz and jump down/up within neighboring segments.
This case is unlikely in reality. The reason is that, even ENF is
dropped suddenly due to sudden large load or loss of generator,
it takes at least 15s [4] for power generation factory to adjust
generation to make up the loss. Motivated by above effects, we
propose a simple yet efficient method to correct errors within
neighboring segments.

The proposed error correction method utilizes the fact
neighboring segments shouldn’t demonstrate jump up/down
and them jump down/up. Let D(i) denote the ENF jump for
ith segment, thus D(i) = ENF (i+ 1)−ENF (i). The jump
back and forth event is identified if all the following conditions
are met:
• Jump has different direction, namely D(i)D(i+ 1) < 0;
• Jump value is larger than a threshold Dt, namely
|D(i)| > Dt and |D(i + 1)| > Dt, where |x| is the
absolute value of x.

C. ENF Examples

In this subsection, we show the ENF signal we extracted
from the training dataset using the algorithm we proposed.

1) With Power Signal : Fig. 3 shows the ENF signal from
using power signal for grid A, C and I, whose nominal ENF
is 60Hz. There are several characteristics we can see,
• All the three grids have small variation range;
• Grid A and C tend to go back to 60Hz more quick than

grid I.
Fig. 4 shows the ENF signal from using power signal for

grid B, D, E, F, G and I, whose nominal ENF is 60Hz. There
are several characteristics we can see,
• Grid B is least stable among all the grids. Its mean

deviates from nominal frequency significantly, and it has
variation range up to 1.9Hz.

• Grid D, E are similar in terms of variation.
• Grid F seems to be the most stable one.
• Grid G and H have larger variation range than Grid D

and E, but are stable than grid B. Grid G has variation
up to 0.4Hz whereas Grid H has variation range up to
0.5Hz.

2) With Sound Signal: We show the ENF signal we ex-
tracted from the sound signal.

Fig. 5 shows the ENF signal from using power signal for
grid A, C and I, whose nominal ENF is 60Hz. There are several
characteristics we can see,
• Grid I has larger variation than Grid A and C, and goes

back to 60Hz less frequently compared to Grid A and C;

• The differences shown in the three grids obtained from
sound signal are similar to that obtained from power
signal.

Above observation suggests that we could use the statistics
obtained from power signal as ground truth for classification
based on sound signal.

Fig. 6 shows the ENF signal from using sound signal for
grid B, D, E, F, G and H, whose nominal ENF is 50Hz. There
are several characteristics we can see,

• Grid B has the largest variation range and the largest
deviation from nominal frequency;

• Grid D, E and F are more stable than other, and Grid F
goes back to nominal frequency quicker than grid D and
E;

• Grid H is less stable than grid G;
• All above trends are the same as what we observe from

ENF obtained from power signal.

III. LOCATION CLASSIFICATION

In this section, we utilize extract features in frequency
domain and time domain, and then we adopt SVM for classi-
fication.

A. Features

The frequency features we adopted include, mean, variance,
and range of the ENF signal, the ratio of the amplitude of first
harmonic, denoted by f1, to the third harmonics, denoted by
f3, as well as the wavelet decomposition for L level using
’db5’ wavelet [5]. The left column of Table I lists all the
features we have tested in this project in frequency domain.

TABLE I: Features Considered
Frequency Domain Time Domain

Mean of ENF Crest factor
Variance of ENF Wavelet decomposition

Wavelet decomposition
Range of ENF
Ratio of f1/f3

We also include the time domain information, including
crest factor and wavelet decomposition. The crest factor is
the ratio of the peak voltage to the root mean square (rms)
of a current waveform. Let C(i) denote the crest factor
for the ith segment. For a perfect sinusoidal waveform, the
crest factor C(i) should be

√
2. Crest factor is an effective

metric to evaluate the distortion of the sine waveform in grid
[4], especially for the signal impacted by the misalignments
between multiple harmonics. Consider two signals with the
same first and third harmonics in amplitude. For one signal,
the two harmonics are aligned, whereas for the other signal,
the two harmonics have opposite phase. In this case, amplitude
information of frequency cannot tell them apart, whereas crest
factor can. The right column of Table I lists all the features
we have tested in this project in time domain.
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Fig. 3: ENF of Grid with Nominal Freq. 60Hz from Power Signal

t (s) ×10
4

0 0.5 1 1.5 2

H
z

49

49.2

49.4

49.6

49.8

50

50.2

50.4

50.6

50.8

51
Grid-B

(a) Grid B
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(c) Grid E
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(d) Grid F
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(e) Grid G
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Fig. 4: ENF of Grid with Nominal Freq. 50Hz from Power Signal

B. Classification based on Nominal Frequency

To improve efficiency of classification, we first perform
classification based on nominal frequency. Specifically, we
compare the values of the maximum for PSD near 50Hz, 60Hz
and their higher harmonics. If the value of maximum near
50Hz is larger than that near 60Hz, we consider the nominal
frequency is 50Hz, and vice versa.

To address the issue that sound signal could be very noisy,
and the estimation from a single segment could be wrong, we
propose a voting scheme to improve the robustness of nominal
frequency estimation. Specifically, we randomly select Nss

segments in first few minutes, where Nss is chosen as an odd
number. For each segment, we estimate its nominal frequency,
vote for corresponding frequency. Whichever frequency gets
the highest votes is regarded as the nominal frequency for
current file.

C. Classification based on Source Type

As shown in [2], either to use power signal to classify
sound file or to use sound signal to classify power signal,
could result in low accuracy. This motivates us to separate
signals based on their source type. It is observed that power
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Fig. 5: ENF of Grid with Nominal Freq. 60Hz from sound Signal
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Fig. 6: ENF of Grid with Nominal Freq. 50Hz from sound Signal

signal has significant less noise than sound signal, especially
for the spectrum between neighboring harmonics. Moreover,
these noises tend to spread out the whole spectrum. Thus,
we calculate average noise power for signal with 5 minutes
duration, and use a threshold THnf to determine the file type.
If the calculated average power level is larger than THnf , the
file is considered to be a sound file. Otherwise, the file is
considered as a power file.

D. SVM for Classification
We use LibSVM library as our SVM tools for classification

[1]. Specifically, we use non-linear radial basis function kernel

for multi-class classification. The parameters of the kernel, the
cost parameter C and a parameter γ, are chosen via cross
validation. Note that LibSVM utilizes a one-on-one classifier
and a voting scheme for multi-class classification. Thus, our
previous classification based on nominal frequency and source
type could reduce the complexity of voting scheme. Weights
are utilized to address the unbalanced training dataset problem
[2].

E. None of Above Option
Whenever the classification result has low confidence, we

compare the confidence rate to a threshold. If the confidence
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rate is smaller than the threshold, we consider the grid tested
does not belong to any training grid. Here, the sound file and
power file have different thresholds. Since grid signals are
cleaner, the classification are usually higher than that based
on sound signals.

F. Feature Selection

We first use cross validation to evaluate the effectiveness
of different features, and then we select the features with the
highest accuracy rate for training and prediction. So far, we
have four categories, which are classified based on nominal
frequency and file type. As observed from previous chapter,
different categories may have different features. For example,
for the 50Hz group, both the ENF from sound and grid
show that ENF range is a good criteria to tell Grid B from
other Grids. As a result, the ENF range should be used as a
feature. Yet for the 60Hz group sound file, the three grids have
similar ENF range. Thus, ENF range would cause confusion
for classifier to tell the three grids apart.

To evaluate the effectiveness of different features, we com-
pare the accuracy for classification using individual feature and
their combinations. Table II summarizes our findings. We use
F3 to represent frequency statistics, including mean, variance
and range, Fw to represent the wavelet decomposition for
ENF, Fr to represent the ratio of f1/f3, Fall to represent all
frequency domain features, Tw to the wavelet decomposition
information of the time domain signal, Tc to represent the crest
factor.

As we can see from Table II, for Grid with 60 Hz, the
maximal accuracy is achieved when the ratio of f1/f3, crest
factor and wavelet decomposition in time domain are selected;
for Grid with 50 Hz, the maximal accuracy is achieved when
the statistics of ENF, the ratio of f1/f3, crest factor, wavelet
decomposition in time domain are selected; for sound with
60 Hz, the maximal accuracy is achieved when only wavelet
decomposition in time domain is selected; and for sound with
50Hz, the maximal accuracy is achieved when the crest factor
and wavelet decomposition in the time domain are selected.

The results shown in Table II are expected. Take the Grid
50Hz and Grid 60Hz for example. We have explained based on
observation, the statistic of ENF, such as range, offers limited
information to classify grids operating at 60Hz, whereas for
grids operating at 50Hz, ENF range could be useful. It is
interesting to see that for sound signals, maximal accuracies
are achieved when only time domain statistics are selected.
Part of the reason is that the ENF signal extracted from the
sound signal might be less accurate than the the ENF signal
extracted from the grid signal.

G. Practice Dataset

We test the performance of our four categories based
classification scheme with practice dataset. The accuracy of
our estimation is 94%. The estimation on item 18, 21 and 47
is wrong. Both item 18 and 47 are supposed to ’None of above
options’, yet they are classified to grid C. The confidence level
for item 18 and 47 estimation are 96% and 89%, respectively.
This result suggests that the features selected for sound 60Hz

are insufficient to differentiate grid C and another Grid in the
practice dataset. The other error is item 21. It is a sound signal
for a grid operating at 50Hz. Our estimation indicates grid F
with confidence level of 58%. The ground truth is grid H. It is
the second choice in our classification system with confidence
level of 22.5%.

H. Test Dataset

Using our proposed classification scheme, the estimation of
test dataset are performed.

I. Source Code Explanations

In this project, we submit the source code due to the
usage of some executable files of libSVM. After unzipping
the compressed file, the user needs to

Set Path Add the unzipped folder, including subfolders,
to the Matlab path. Make sure that subfolder libsvm-3.21 is
added. Users can right click the libsvm-3.21 folder, choose
”Add to Path”, and then choose ”Selected Folders and Sub-
folders”.

Call judgement.m Use function
[Label, Conf ] = judgement(Ori,Outloc,N).
For test purpose, Set
Ori =′ Testing dataset/Test ′;
Outloc =′ Testing result/′;
N = 100;
Label contains the estimated grid label and Conf is a vector

contains the confidence level for each estimation.

IV. CIRCUIT DESIGN AND DATA ANALYSIS FOR ENF
ACQUISITION

A. Hardware Design for the Sensing Circuit

In this section, we design a sophisticated sensing circuit for
sampling real-time voltage signal out from power jack in our
region. The circuit design is explained and justified component
by component. The data acquisition was taken in household
and university campus, with five hours of each location, at ten
time slots, with each slot of one hour length. A preliminary
analysis on acquitted data is conducted from theoretical point
of view.

1) Transformer And Voltage Divider: A transformer is
firstly introduced to our circuit in order to downgrade 110 AC
to a safe range for both human beings and the sensing circuit
without sacrificing the natural frequency features from power
grid. Due to reality constraint, the maximum ratio, N1/N2,
which we can acquire is 115/12.6 = 9.1, where n1 represents
the number of turns at primary winding and n2 represents
the number of turns at secondary winding. According to the
equation V1/V2 = N1/N2 where V1 is primary voltage and
V2 is secondary voltage, the secondary voltage is calculated
as V2 = V1*N2/N1 which is 12.08V AC in our case. However,
this voltage strength still exceeds 3.3V which is the limit of
Analog-Digital-Converter (ADC) on Arduino Zero.

A simple but effective voltage divider is introduced right
after we can source the downgraded AC voltage from trans-
former. Since the range of ADC is from 0 V to 3.3 V, we
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TABLE II: Accuracy Test for Feature Selection
Grid 60Hz sound 60Hz Grid 50Hz sound 50Hz

F3 57.333% 69.44% 61.46% 59.72%
Fw 78% 69.44% 64.93% 45.83%
Fr 98.67% 61.11% 88.54% 65.28%
Fall 88% 80.556% 92.71% 75%

F3 + Fw 78% 72.22% 75.35% 55.56%
Fr + Fw 88% 83.33% 88.89% 66.67%
Fr + F3 96.67% 72.22% 90.63% 83.33%
Tw 95.34% 91.67% 98.27% 97.22%
Tc 98% 69.44% 86.11% 47.22%

Tc + Tw 98% 86.11% 98.96% 100%
Tc + Tw +F3 96% 75% 98.96% 94.44%
Tc + Tw +Fr 98.67% 86.11% 98.26% 98.61%

Tc + Tw +Fr + F3 96.67% 88.89% 98.96% 94.44%
Tc + Tw +Fall 96% 80.55% 97.91% 88.88%

propose to have input signal ranging from 0.1 V to 3.2 V
to neither burn the ADC pin nor be clipped. As a result,
the downgraded voltage signal is 1.55 V AC. Therefore, the
ratio of two resistor-blocks is 1.55/(12.08-1.55) = 0.15. Due to
the limited variety of resistors package, we build the voltage
divider by using R1 = 1kΩ and R2 = 220 Ω and R3 = 470 Ω
whose ratio of R1:R2//R3 is calculated as 0.19 as expected.

2) Analog Digital Converter And Bias Voltage: For sam-
pling real-time data, an Arduino Zero board is utilized because
of three reasons. First of all, it provides us with a higher
resolution of Analog Digital Converter, which can reach as
high as 12 bits while other type of Arduino board such as Mega
only allows 8 bits of resolution. Second, its clock owns a faster
processing speed than any other Arduino board like Arduino
Uno, where Arduino Zero owns a 48 MHz clock whereas
Arduino Uno only owns a 16 MHz clock. The higher clock
speed renders more stability while sensing signal at 1 kHz
since it reduces actual time required for analog reading and
data sending thus stabilizes data sampling at 1 kHz. Thirdly, in
general Arduino board is easier to setup compared with other
programmable board such as Raspberry Pi.

However, as an ADC pin, it does not take any value above
3.3 V or below 0 V. Thus, a DC biased voltage is needed to
shift the transformed voltage up by 1.55 V so that sinusoid
wave never goes below zero and above 3.3. Since Arduino
Zero provides with a 3.3 V DC supply, we propose to source
from there with a voltage divider involved. Such a voltage
divider is expected to split 3.3 V to 1.63V and 1.67 V with
which we can avoid negative signal input. Thus, we utilize a
R4 = 100 kΩ and (R5 = 100+R6 = 2.2) kΩresistors to achieve
so. The resultant sinusoid wave ranges from 0.25 mV to 3.25
V as expected and allowed.

3) External Clock: As the internal clock in Arduino Zero
has a offset of 120 seconds per year, which is roughly 3
microseconds per second. Thus, an idea of an external clock
comes in our mind to guarantee sampled data as frequent
as 1024 Hz. The module named DS 3231 is introduced as
an external clock source for Arduino Zero to clock data
accurately. DS 3231 is setup in such a way that it sends 1024

square waves via its Square Wave (SQW) pin. In order to
sample signal at such frequency, an interrupt is introduced
in Arduino Zero so that it can sample data one time once
a rising edge occurs. As a result, 1024 samples is sensed
every second under this configuration. Furthermore, since the
voltage coming out from SQW pin has a value of 4.85 V which
exceeds the upper bounds of a digital pin on Arduino Zero,
we lower down the voltage by paralleling a 10 kΩ resistor and
a 2.2 kΩ resistor. This is simply because the SQW pin acts as
a voltage node rather than a voltage source.

4) Possible Cause of Signal Noise: Severe Weather Con-
dition A severe weather condition might cause significant
fluctuation in the sampling data set. As known, power is trans-
mitted through transmission line which exposes to outdoor
environment. As one of our sampling data sets has shown,
much more of noise occurred compared with other data sets
when we sampled data at 18th Jan 2016 where a heavily snow
swept over most of Ontario cities, including waterloo.

Capacitor Tank And Inductor Capacitor in household used
equipment has a significant impact on the sampling data that
we acquired from home where much more noise can be seen
from sensing data. In addition, since our home-sensing data
are from one of unit in an apartment building rather than a
single house, electrical action produced from neighbors can
also be an important factor that affect real-time signal. This
can also be demonstrated as in Fig. 8.

B. Data Analysis

In the part, we first show the ENF info of our recording
and discuss which grid is shared most similarity with in the
training dataset.

1) ENF Info.: The ENF info of our recording signal is
shown in Fig. 9. The Fig. 9(b) and the Fig. 9(c) show the ENF
for recordings at home and at university, respectively. As we
can see, the nominal frequency of the waterloo grid is 60Hz,
which is the same as grid A, C and I in the training dataset.
The variation of ENF for the waterloo grid looks small, with
range less than 0.1Hz, and the variation of ENF looks smaller
than the variation at home.
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Fig. 7: Schematic
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Fig. 9: ENF Info for Grid at Waterloo, Ontario

Fig. 8: Distorted Signal

2) Waterloo Grid is part of Grid C: We use the proposed
classifier to determine the waterloo grid belongs to which grid

in the training dataset. We clip 10 minutes long signal from
each recording, and estimate their grid respectively. For 4 test
files, our classifier outputs all indicate waterloo grid is part
of grid C with the same confidence level of 47.6%. Since the
confidence level is low, we consider waterloo grid belongs to
”None of Above Options”.

V. CONCLUSION

In this project, we have proposed to utilize features in both
time domain and frequency domain to improve classification
accuracy. Specifically, we propose to utilize crest factor in
time domain and the ratio of f1/f3 in frequency domain as
indicators of the distortion of power signal. Moreover, we have
proposed to categorize signals based on the nominal frequency
and source type to improve efficiency of the classifier. Through
cross validation, we identify the most effective features for dif-
ferent categories to further enhance accuracy. On the practice
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dataset, our proposed algorithm can achieve accurate rate of
94%. We have also designed and built a circuit with accurate
timing for power signal acquisition.
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