IMAGE SPLICING DETECTION BASED ON GENERAL PERSPECTIVE CONSTRAINTS

M. Iuliani, G. Fabbri, A. Piva

Dept. of Information Engineering University of Florence (Italy) alessandro.piva@unifi.it

WIFS 2015, 16-19 November, Rome

Outline

Experimental Results

Conclusions & Questions

Introduction

Inherent traces are left behind in a digital image when image splicing is applied:

Signal Level Traces

Splicing can leave demosaicking artefact, compression artefact, etc ...

Physical Level Traces

- it is difficult to properly place the spliced object
 - inconsistencies in lights
 - inconsistencies in reflections
 - inconsistencies in geometrical perspective

Introduction

Inherent traces are left behind in a digital image when image splicing is applied::

Signal Level Traces

Splicing can leave demosaicking artefact, compression artefact, etc ...

Physical Level Traces

Pros:

Robust to filtering, heavy compression & resizing

Cons:

Require user interaction

Work on very limited scenarios

State of the Art

- Yao et al. proposed a method to determine whether two subjects placed on the same plane have respective sizes satisfying perspective rules.
- □ by estimating the ratio of their height

Example

01

Contribution

- knowledge of camera parameters not required
- some a priori knowledge needed
- Needs buildings, streets, to obtain VL
- It works only if the picture is taken with no tilt & no roll, resulting almost useless on many images.

Extension to general perspective conditions
Verify it on real case

images exchanged through social networks

Detection Scheme

Pinhole camera model

X = (X,Y,Z,1) and x = (x, y,1) are the homogeneous

coordinates of 3D world points and 2D image points

Tampering Detection

Bottom and top of object A

$$\mathbf{x}_A = P \begin{bmatrix} X_A \\ Y_A \\ 0 \\ 1 \end{bmatrix} \quad \mathbf{x}'_A = P \begin{bmatrix} X_A \\ Y_A \\ Z_A \\ 1 \end{bmatrix}$$

Height can be determined up to a scale factor

$$\alpha Z_A = \frac{||\mathbf{x}_A \times \mathbf{x}'_A||}{(\bar{\mathbf{l}} \cdot \mathbf{x}_A)||\mathbf{v}_Z \times \mathbf{x}'_A||}$$

I: Vanishing line of the reference plane

 $\boldsymbol{v}_{\boldsymbol{Z}}\!\!:$ vanishing point of the vertical direction

Tampering Detection

Height Ratio between two objects A and B can be determined

$$\mathcal{K} = \frac{Z_A}{Z_B} = \frac{||\mathbf{x}_A \times \mathbf{x}'_A||}{||\mathbf{x}_B \times \mathbf{x}'_B||} \frac{(\bar{\mathbf{l}} \cdot \mathbf{x}_B)||\mathbf{v}_Z \times \mathbf{x}'_B||}{(\bar{\mathbf{l}} \cdot \mathbf{x}_A)||\mathbf{v}_Z \times \mathbf{x}'_A||}$$

We need:

+ Top and bottom of objects A and B

+ Vanishing line

+ Vertical vanishing point

- The vanishing line can be identified by the cross product of the vanishing points of two non parallel directions of the reference plane.
- □ At least two lines are needed to estimate a vanishing point .

Example

Example

- 07651
- Top and bottom of the two targets A and B are manually selected by the user.
- Each couple should be aligned with v_7 (being the target aligned to the vertical direction), then the selected have to be corrected to satisfy the geometric constraint.

Detection Scheme

Consistency Feature

- lpha Ground Truth Height Ratio
- \mathcal{K} Estimated Height Ratio

We assume that in authentic images

$$(\kappa - \alpha) \sim N(0, \sigma^2)$$

Consistency Feature

$$C = 2F(-|\alpha - \mathbf{K}|, 0, \sigma^2) \qquad \qquad \mathbf{F} \cdot \mathbf{CDF}$$

Anomaly
$$0 < C < 1$$
 Good Estimation

$$C < au \Rightarrow$$
 evidence of tampering

Experimental Setup

Dataset

7 high res images (6-8 megapixel) containing both authentic and tampered elements

Collected Data

Authentic Targets	Tampered Targets	Number of Pictures	Autentic Couples	Tampered Couples
4	2	5	30 = 6x5	40 = 8x5
6	3	1	15	18
6	0	1	15	0
		ТОТ	60	58

The height of each analyzed subject is known!

Dataset

High Resolution detail

The Pain of Being Social

Performance

Improvement of state of the art technique

Applicable under general perspective condition Applicable on images exchanged through social network (Facebook, Twitter)

What Now?

Results confidence analysis

different perspective condition Different user behavior

Further extensions

Compare subjects on parallel planes Lower user interaction

Thank you!

alessandro.piva@unifi.it