Multicasting with Untrusted Relays: A Noncoherent Secure Network Coding Approach

Ta-Yuan Liu¹, Shih-Chun Lin², and Y.-W. Peter Hong¹

¹Inst. of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan ²Dept. of Electronic and Computer Eng., National Taiwan University of Science and Technology, Taipei, Taiwan

Multihop Network

- Network coding in general improves throughput and reliability.
- □ It is common to assume that all the relays are trustworthy.
- However, in practice, some of them may be provided by a third party which cannot be fully trusted.

Multihop Network with Untrusted Relays

- Untrusted (or third party) relays may potentially be compromised by an outside adversary (or an eavesdropper).
- More relays (trusted or not) provides more paths for simultaneous information transfer, but yields higher risk of being eavesdropped.
- Intuitively, one should recruit untrusted relays ONLY when the secrecy capacity can be improved by doing so.
 - Secrecy capacity: Maximum transmission rate without information leakage

Main Contributions

- 4
- Exam the impact of untrusted relays in the multihop network system and determine the optimal input signal that maximizes secrecy capacity when untrusted relays are recruited.
- Discuss the untrusted relays recruitment problem based on the secrecy capacity in two different cases:
 - Case1: All untrusted relays <u>near the destination</u> are compromised <u>with</u> probability 1.
 - Case 2: <u>Each</u> untrusted relay is compromised <u>with probability p</u>.

System Model: Random Linear Coding

5

The signal transmitted from the source to the first hop of relays is $X \in \mathcal{F}_q^{m \times T}$

 $\square m$ is the # of relays in the first layer, T is packet length, and q is field size.

- Random linear network coding: Each relay forwards a linear combination of its received signals with coefficients chosen uniformly over the finite field *Fq*.
- Received signal:
 - Destination: Y = HX where $H \in \mathcal{F}_q^{n \times m}$.
 - Eavesdropper: Z = GX where $G \in \mathcal{F}_q^{e imes m}$.
 - e: the number of untrusted relays compromised by the eavesdropper.

System Model: Without Recruitment

Assumptions:

- (i) We assume that, after a sufficient number of hops, the effective channel matrices H and G are i.i.d. uniform in \mathcal{F}_q . [Siavoshani & Fragouli '12]
- (ii) H and G are unknown at all nodes (i.e., a noncoherent framework), e.g., when the encoding vector is NOT appended to the network coding packets.
- Special Case: When NO untrusted relays are recruited, the system model can be reduced as

Secrecy Capacity: Equivalent Degraded Channel

The secrecy capacity

$$\max_{V \to X \to Y, Z} I(V; Y) - I(V; Z)$$

[Csiszar & Korner '78]

- V is a auxiliary variable.
- **\square** It is difficult to joint optimize V and X.

Equivalent degraded channel:

• Focus on the case n > e (if $n \le e$, $C_s = 0$)

Original Channel:

Equivalent Degraded Channel

Y = HXZ = GX

 $Y' = \begin{bmatrix} G \\ H' \end{bmatrix} X$ Z' = GX

- **Equivalent:** Secrecy capacity only depend on $p(\mathbf{Y}|\mathbf{X})$ and $p(\mathbf{Z}|\mathbf{X})$.
- **Degraded:** $X \to Y' \to Z'$ forms a Markov chain.

> The secrecy capacity of degraded channel is

 $C_s = \max_{p_x} I(X;Y') - I(X;Z'),$ [Wyner '75]

Secrecy Capacity: Optimal Input Structure

8

Lemma 1([Siavoshani & Fragouli '12]): The secrecy capacity is given as

$$C_s = \max_{\Pi_X} I(\Pi_X; \Pi_{Y'}) - I(\Pi_X; \Pi_{Z'}).$$

where Π_X is the subspace which spanned by the row vectors of X. Moreover, the distribution of optimal input Π_X^* is given by

$$P_{\Pi_X^*}(\pi_x) = \alpha_{d_x} \begin{bmatrix} T \\ d_x \end{bmatrix}$$

where $\alpha_{d_x} \triangleq \Pr[\dim(\Pi_X) = d_x]$ is the probability that Π_X is of dimension d_x .

- > Only depend on the subspace spanned by the row vectors of input signal X .
- > All subspaces of the same dimension occur with equal probability.

Optimization Problem

9

Input optimization problem:

 $C_s = \max_{\underline{\alpha}} R(\underline{\alpha}), \text{ subject to } \|\underline{\alpha}\|_1 = 1,$ where $R(\underline{\alpha}) \triangleq I(\Pi_X^*; \Pi_{Y'}) - I(\Pi_X^*; \Pi_{Z'})$ and the subspace-dimension probabilities $\underline{\alpha} \triangleq [\alpha_0, \cdots, \alpha_{\min(m,T)}]^T.$

The rate function can be written as

$$\begin{split} R(\underline{\alpha}) &= -\sum_{d_x=0}^{\min(m,T)} \alpha_{d_x} n d_x \log_2 q - \sum_{d_x=0}^{\min(m,T)} \alpha_{d_x} q^{-nd_x} \cdot \sum_{d_{y'}=0}^{\min(n,d_x)} \psi(n,d_{y'}) \begin{bmatrix} d_x \\ d_{y'} \end{bmatrix} \log_2(f_{Y'}(d_{y'},\underline{\alpha})) \\ &+ \sum_{d_x=0}^{\min(m,T)} \alpha_{d_x} e d_x \log_2 q + \sum_{d_x=0}^{\min(m,T)} \alpha_{d_x} q^{-ed_x} \cdot \sum_{d_{z'}=0}^{\min(e,d_x)} \psi(e,d_{z'}) \begin{bmatrix} d_x \\ d_{z'} \end{bmatrix} \log_2(f_{Z'}(d_{z'},\underline{\alpha})), \end{split}$$

> Too complex to derive analytically.

- Solved using a projection-based gradient descend algorithm.
 - Converge to the optimal solution.

Numerical Result: Secrecy Rate with Different Input Signals

10

Untrusted Relay Recruitment Problem

11

□ Large field size approximation: When field size $q \gg 1$, the secrecy capacity can be approximated as

 $C_s \approx (\min(m_t + m_u, n_t + n_u) - e)(T - \min(m_t + m_u, n_t + n_u)) \log q,$ [Siavoshani & Fragouli '12]

Special Case (No Untrusted Relays): $m_u = n_u = e = 0$.

 $C \approx \min(m_t, n_t)(T - \min(m_t, n_t)) \log q.$

- Question: When should we recruit untrusted relays?
 - Case I: All untrusted relays <u>near the destination</u> are compromised <u>with</u> probability 1.
 - Case II: <u>Each</u> untrusted relay is compromised <u>with probability p</u>.

Case 1: All Untrusted Relays Near the Destination are Compromised

In this case, we assume that the eavesdropper is near the destination so that all n_u untrusted relays in the last hop are compromised.

Theorem 1: Let $d_t = m_t - n_t$ and $d_u = m_u - n_u$.

When $T > m_t + \max(m_u, n_t)$, untrusted relays should be recruited if (d_t, d_u) satisfies one of the following conditions.

(1) $d_t + d_u \le 0$ and $d_u > \frac{m_t m_u}{T - m_t - m_u}$ (2) $d_t + d_u > 0$ and $d_t < \frac{-n_t n_u}{T - n_t - m_t}$.

Recruit Region

- \Box Eavesdropper can obtain $e = n_u$ dimension.
- □ Large d_u : Recruiting untrusted relays provide more Tx dimension than Rx dimension.
- \Box Small d_t : Lack of transmit dimension in the original system.
- When $T \to \infty$, the recruit region is characterized by (d_u, d_t) only.

Case 2: Each Untrusted Relay is Compromised with Probability p

- There is a total of r_u untrusted relays that may be compromised with probability p.
 - **The number of compromised relays:** $e \sim \mathcal{B}(r_u, p)$ (Binomial distribution)
- Outage probability: (The probability of no improvement)

$$P_{out} \triangleq P_r \left[C_s(\mathbf{e}) - C \le 0 \right] \\= P_r \left[\mathbf{e} \ge \frac{(k_1 - k_2)(T - k_1 - k_2)}{(T - k_1)} \right].$$

where $k_1 = \min(m, n)$ and $k_2 = \min(m_u, n_u)$.

Asymptotic Outage Probability

- Suppose that $r_u \to \infty$ and that $m_u = \beta_m r_u$ and $n_u = \beta_n r_u$ for some positive ratio β_m, β_n .
- □ In this case, m_t, n_t are negligible compared to r_u (and also m_u and n_u).

<u>Theorem 2</u>: Let us consider a multihop network with parameters (m_u, n_u, r_u) . If $m_u = \beta_m r_u$ and $n_u = \beta_n r_u$ and $T \ge \min(m_u, n_u)$, then $P_{out} \rightarrow \begin{cases} 0 & \text{if } p < \beta \\ 1 & \text{if } p \ge \beta \end{cases}$ as $r_u \to \infty$, where $\beta = \min(\beta_m, \beta_n)$.

- $\beta \cdot r_{u}$: Dimension provided for the legitimate parts.
- $p \cdot r_u$: Dimension eavesdropped by the eavesdropper.

Conclusions

- Consider a non-coherent multihop network system with the help of untrusted relays which are potentially eavesdropped.
- Determine the optimal input signal when untrusted relays are recruited by a gradient descend algorithm.
- Recruiting untrusted relays problem:
 - Case 1: Determine the recruiting region when all untrusted relays near the destination are compromised.
 - Case 2: Derive the outage probability when each untrusted relay is compromised with probability p, and show that when p is less than a threshold, one should recruit.

Thank You for Listening~!