Cooperative Learning via Federated Distillation over Fading Channels

*Jinhyun Ahn, **Osvaldo Simeone, and *Joonhyuk Kang
*KAIST, South Korea,
**King’s College London, UK
Contents

- Introduction
- Problem Definition
- Proposed Method
- Numerical Results
- Conclusion
- References
- Appendix
Introduction

- Federated Learning
 - Federated learning (FL), is developed recently, which features distributed learning at edge devices and periodic local-update of model (model coefficients or gradients) averaging at an parameter server (PS)
 - Nevertheless, the updates uploading in FL can be still bandwidth-consuming as an AI model usually comprises millions to billions of parameters [7]
 - A key research issue that is particularly hot recently is to reduce the overhead in update uploading to further accelerate the model training process [8]–[13]
 - Addressing the straggler effect in synchronous update averaging
 - Developing lazily updating algorithm that schedules only those devices with significant updates to save the updating bandwidth
 - Compress gradient vectors by exploiting its inherent sparsity (most of the gradient elements are insignificant and thus can be truncated without harming the model accuracy)
Introduction

- Federated distillation
 - To alleviate this problem, federated distillation (FD) was introduced for classification problems in [14]
 - Distillation for learning model was proposed by Hinton et al. [15]
 - To transfer a knowledge about a learning model, output vectors per inputs are sent from teacher
 \[
 \begin{pmatrix}
 1 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0
 \end{pmatrix}
 \]
 \[
 \begin{pmatrix}
 0.611 \\
 0.032 \\
 0.002 \\
 0.015 \\
 0.012 \\
 0.005 \\
 0.006 \\
 0.231 \\
 0.075 \\
 0.011
 \end{pmatrix}
 \]
 \[
 \begin{pmatrix}
 0.805 \\
 0.016 \\
 0.001 \\
 0.008 \\
 0.006 \\
 0.002 \\
 0.003 \\
 0.116 \\
 0.038 \\
 0.005
 \end{pmatrix}
 \]
 - Cross entropy with Per input
 - Weighted average

- In FD, devices periodically exchange the average output logit vectors per labels instead of local update of model in FL (less information but lower accuracy gain than FL)
 - We propose a novel hybrid federated distillation (HFD) scheme that aims at bridging the performance gap between FD and FL
Introduction

- **Wireless Implementation of FD and HFD**
 - In many practical implementations, however, bandwidth of the communication channel from devices to the PS turns out to be the main bottleneck [16], [17]
 - Recently, a multiple access scheme called “over-the-air” computation (AirComp) is particularly appealing in the scenario as it integrates transmission and computation and allows “one-shot” data aggregation by exploiting the waveform-superposition property of a multi-access channel (MAC) [18-19], [25]
 - There is no previous work about the wireless implementation of FD
 - We propose a communication scheme for the implementation of FD focusing on the quantization and compression
 - Both a conventional digital scheme and an analog scheme are considered for the communication in the uplink and downlink
Problem Definition

- Problem Definition
 - K devices communicate via an Access Point (AP) so as to train a machine learning model that outperforms a model trained solely on the local training set.
 - For device k:
 - Data set $\mathcal{D}_k : (c, t)$ (vector of covariates, one-hot encoding vector)
 - Trains its own neural network model: $\mathbf{w}_k, \ W \times 1$
 - Neural network produces the logit vector: $\mathbf{s}(\mathbf{c} | \mathbf{w}_k)$
 - the probability vector: $\hat{t}(c | \mathbf{w}_k)$

$$
\hat{t}(c | \mathbf{w}_k) = \frac{1}{L} \sum_{i=1}^{L} e^{s_i} = \begin{bmatrix} e^{s_1} \\ \vdots \\ e^{s_L} \end{bmatrix}
$$
Training Protocols (FL)

Algorithm 2 Federated Learning (FL)

for each iteration $i = 1, \ldots, I$

for each device $k = 1, \ldots, K$

download from PS the average weight update

$$\Delta w_{i-1} = \frac{1}{K} \sum_{k=1}^{K} \Delta w_{i-1}^k$$

set initial value

$$w_i^k = w_{i-1}^k + \Delta w_{i-1} - \Delta w_{i-1}^k \equiv w_{i,o}^k$$

for each iteration of local training

do SGD update as in (1), for a randomly selected training example $(c, t) \in D_k$

do

upload update $\Delta w_i^k = w_i^k - w_{i,o}^k$ to PS

- The weight vectors at each device are initialized to the average weight vectors using the average weight update downloaded from the PS
- Devices carry out a number of local updates using SGD as the update in IL
- Upload the resulting weight vector to the PS
Training Protocols (FD)

- Instead of neural network model parameters, devices exchange the local-averaged logit vector per labels (10 values per 10 classes for MNIST).
- Applies the global-averaged logit vectors per labels for its own local training.
Training Protocols (FD)

Algorithm 3 Federated Distillation (FD)

for each iteration $i = 1, \ldots, I$

for each device $k = 1, \ldots, K$

download from PS the global-averaged logit vectors for all labels $t = 1, \ldots, L$

$$s_{i,t} = \frac{1}{K} \sum_{k'=1}^{K} s_{i,t}^{k'}$$ (2)

obtain the local logit vectors

$$s_{i,t}^{k} = \frac{Ks_{i,t} - s_{i,t}^{k}}{K - 1}$$ (3)

initialize $s_{i+1,t}^{k} \leftarrow 0$ and $n_{i+1,t}^{k} \leftarrow 0$ for all labels $t = 1, \ldots, L$

for each iteration of local training

do SGD update

$$w_{i}^{k} \leftarrow w_{i}^{k} - \alpha \nabla w_{i}^{k} \left\{ (1 - \beta) \phi \left(i \left(c | w_{i}^{k} \right), t \right) + \beta \phi \left(i \left(c | w_{i}^{k} \right), \hat{i} (s_{i,t}^{k}) \right) \right\}$$ (4)

for a randomly selected training example $(c, t) \in D_{k}$

update the logit vector and the label counter

$$s_{i+1,t}^{k} \leftarrow s_{i+1,t}^{k} + s \left(c | w_{i}^{k} \right)$$

$$n_{i+1,t}^{k} \leftarrow n_{i+1,t}^{k} + 1$$

end

upload the local-averaged logit vectors $s_{i+1,t}^{k} \leftarrow s_{i+1,t}^{k}/n_{i+1,t}^{k}$ to the PS for all labels $t = 1, \ldots, L$

- In (2) and (3), each device excludes its own information from the averaged logit vectors
- In (4), each device carries out a number of local updates using the averaged logit vectors as a regularizer
- During the local updates, each device computes and uploads the local-averaged logit vectors for all labels to the PS
Training Protocols (HFD)

- The proposed HFD modifies FD by using not only the average logit vector but also the average covariate vector per label, which is shared during a preliminary offline phase.
- In the distillation [15],
 - Teacher and students share the same covariates vectors
 - The teacher’s knowledge is transferred by sending every logit vectors for all covariates
 - Student uses associated logit vectors for local training of covariates
- In FD, the teacher’s knowledge is the average logit vectors per labels
- In HFD,
 - The teacher’s knowledge is average covariate vector and its output logit vectors per labels
 - Updates consist of distillation phase and IL phase
 - **Distillation phase**: updates over only global averaged covariate vectors using the downloaded logit vectors as regularizer as in FD
 - **IL phase**: updates over local dataset
Prior to the global iterations
- Obtain the local averaged covariate vectors
 \[\tilde{c}_t^k \quad t = 1, \ldots, L \]
- Download the global averaged covariate vectors exclude its own information
 \[\tilde{c}_t = \frac{1}{K} \sum_{k' = 1}^{K} \tilde{c}_t^{k'} \]
 \[\tilde{c}_t^k = \frac{K \tilde{c}_t - \tilde{c}_t^k}{K - 1} \]

Algorithm 4 Hybrid Federated Distillation (HFD)

for each device \(k = 1, \ldots, K \)
 for each iteration \(i = 1, \ldots, I \)
 - download from PS the global-averaged logit vectors (5) for all labels \(t = 1, \ldots, L \)
 - obtain the logit vectors (6)
 - for each iteration of the distillation phase of local training
 do SGD update as in (7) for a data point \((\tilde{c}_t^k, t) \) for a randomly chosen label \(t \)
 - for each iteration of the IL phase of local training
 do SGD update as in (3) for a randomly selected training example \((c, t) \in D \)
 - upload the logit vectors
 \[s_{i+1,t}^k = s(\tilde{c}_t^k \mid w_i^k) \]
 - to the PS for all labels \(t = 1, \ldots, L \)

- As in FD, each device downloads the global averaged logit vectors (and exclude)
- At the distillation phase, does SGD updates with the covariate vectors using the logit vectors as a regularizer for a randomly chosen label
- At the IL phase, each device does SGD updates with its own local dataset
- After the local updates, computes and uploads the output logit vectors of local averaged covariate vectors per labels
Wireless Cooperative Training

- Proposed four wireless implementations of FL and FD/HFD
 - Digital (D) or analog (A) communication in uplink and downlink
 - digital-digital (D-D) / digital-analog (D-A)
 - analog-digital (A-D) / analog-analog (A-A)

- Digital transmission for both uplink and downlink is based on separate source-channel coding
 - UL: Equal resource allocation to devices, sparsification and quantization(FD/HFD)
 - DL: Broadcast after compression and quantization

- Analog transmission implements joint source-channel coding through over-the-air computing
 - UL: Simultaneous transmission in uncoded manner
 - DL: Broadcast \rightarrow Consider scaling factor and AMP algorithm at each device
Wireless Cooperative Training

- **Channel Model**

 - During each information exchange phase of the \(i\)-th global iteration, devices share a **fading uplink multiple-access channel**: The received signal is
 \[
 y_i = \sum_{k=1}^{K} h_i^k x_i^k + z_i
 \]
 - \(h_i^k\): quasi-static fading channel from the device \(k\) to the AP
 - \(x_i^k\): \(T_U \times 1\) signal transmitted by the device \(k\)
 - \(z_i\): \(T_U \times 1\) noise vector with i.i.d. \(\mathcal{CN}(0,1)\) entries
 - Each device \(k\) has a power constraint \(E[\|x_i^k\|_2^2]/T_U \leq P_U\)

 - The AP can **broadcast to all device in downlink** so that the received signal is
 \[
 y_i^k = g_i^k x_i + z_i^k
 \]
 - \(g_i^k\): quasi-static fading channel from the AP to the device \(k\)
 - \(x_i\): \(T_D \times 1\) signal transmitted by the AP
 - \(z_i^k\): \(T_D \times 1\) noise vector with i.i.d. \(\mathcal{CN}(0,1)\) entries
 - The AP has a power constraint \(E[\|x_i\|_2^2]/T_D \leq P_D\)
Wireless Cooperative Training

- **Performance Comparison**
 - 10 devices train a 6-layer CNN to carry out image classification based on subsets of the MNIST data set available at each device
 - The distributions of dataset are i.i.d.
 - Randomly select disjoint sets of 64 samples from the 60,000 training MNIST examples, and allocate each set to a device
 - Channel fading: Rician fading
 - Number of global iteration: 10
 - Learning rate: 0.001
 - Number of quantization bits: 16
 - Sparsification level for analog transmission: \(q = 4T/5\)
 - \(T_U = T_D = T\)
 - \(P_D = P_U + 10\) dB
Wireless Cooperative Training

- **Performance Comparison**

 - Number of channel uses varies under $P_U = 0 \text{ dB}$
 - FD and HFD significantly outperform FL at low values of T that is, with limited spectral resources
 - HFD is seen to uniformly improve over FD
 - The A-A scheme is clearly preferable over the alternatives

![Graph](image)

Fig. 2: Classification test accuracy for IL, FL, FD, and HFD under implementations D-D, D-A, A-D, and A-A
Wireless Cooperative Training

- **Performance Comparison**

 - The number T is 2500
 - The figure confirms that FD and HFD significantly outperform FL at low values of P.
 - And HFD uniformly improves over FD.
 - The A-A scheme shows the best performance, especially for lower values of P.
 - It is checked that the performance of analog transmission scheme converges when P increases (The figure should be plotted for larger SNR).

Fig. 2: Classification test accuracy for IL, FL, FD, and HFD under implementations D-D, D-A, A-D, and A-A.
Development of FD/HFD to support FL under limited communication resources
- Propose the HFD training protocol
- Investigate the wireless implementations of FD/HFD

Questions → wlsgus3396@kaist.ac.kr
References

References

Appendix: Wireless Cooperative Training

- **Uplink Digital Transmission (FL, FD/HFD)**
 - Consider for simplicity an equal resource allocation to devices
 - The number of bits that can be transmitted from each device k at the i-th global iteration is given using Shannon’s capacity
 \[B_{U,k,i} = \frac{T_U}{K} \log_2 \left(1 + |h_i^k|^2 K P_U \right) \]
 - Each device k compresses the corresponding information to be sent to the AP to no more than $B_{U,k,i}$ bits
 - Devices are aware of the rate and hence of the channel power
 - AP has full channel state information
Appendix: Wireless Cooperative Training

- **Uplink Digital Transmission (FL)**
 - Each device k aims to send Δw_i^k at the i-th global iteration
 - Adopts spares binary compression with error accumulation as
 \[v_i^k = \text{sparse}_{q_i^k} (\Delta w_i^k + \Delta_i^k) \]
 where the accumulated quantization error is updated as
 \[\Delta_i^{k+1} = \Delta w_i^k + \Delta_i^k - Q_b (v_i^k) \]
 - Then it sends
 \[B_{U,k,i}^{FL} = b + \log_2 \left(\frac{W}{q_i^k} \right) \]
 bits to send the value $Q_b (\mu)$ and the indices of the non-zero elements of v_i^k, where q_i^k is chosen as the largest integer satisfying $B_{U,k,i}^{FL} \leq B_{U,k,i}$

\[\begin{align*}
\text{sparse}_q (u) & \quad - \text{All elements except the largest } q \text{ elements and smallest } q \text{ elements of } u \text{ are set to zero} \\
\mu^+ & \quad - \text{mean of remaining positive elements} \\
\mu^- & \quad - \text{mean of remaining negative elements} \\
\text{If } |\mu^-| > |\mu^+| & \quad - \text{the negative elements are set to zero and the positive elements are set to } \mu^+ \\
\text{If } |\mu^-| < |\mu^+| & \quad - \text{the positive elements are set to zero and the negative elements are set to } \mu^- \\
\end{align*} \]

- Quantizes each non-zero element of u using a uniform quantizer with b bits per each non-zero element
Appendix: Wireless Cooperative Training

- Uplink Digital Transmission (FD/HFD)
 - Each device k aims to send logit vectors $s_{i,t}^k$ at the i-th global iteration for all labels $t = 1, \ldots, L$
 - Adopts sparsification and quantization as
 \[
 q_{i,t}^k = Q_b(\text{thresh}_{q_i^k}(s_{i,t}^k)) \quad t = 1, \ldots, L
 \]
 - Then it sends
 \[
 B_{U,k,i}^{FD} = L(bq_i^k + \log_2(\frac{L}{q_i^k}))
 \]
 bits to send the non-zero values and the indices of the non-zero elements of $q_{i,t}^k$
 where q_i^k is chosen as the largest integer satisfying $B_{U,k,i}^{FD} \leq B_{U,k,i}$

\[\text{thresh}_{q}(u)\]

- Sets all elements of the input vector u to zero except the q elements with the largest absolute values
Appendix: Wireless Cooperative Training

- **Downlink Digital Transmission (FL, FD/HFD)**
 - **The number of bits** that can be transmitted from AP to devices at the i-th global iteration is given using Shannon’s capacity

 $B_{D,i} = \min_k \left(T_D \log_2 \left(1 + |g_i^k|^2 P_D \right) \right)$

 - **Satisfying** $B_{D,i}^{FL} \leq B_{D,i}$ and $B_{D,i}^{FD} \leq B_{D,i}$, AP compresses and quantizes the corresponding information
Appendix: Wireless Cooperative Training

- Uplink Analog Transmission (FL, FD/HFD)
 - All the devices transmit their information simultaneously in an uncoded manner to the AP
 - Different types of power control at each devices have been studied in the literature, namely full-power transmission, channel inversion [18],[19], and optimized power control [26], [27]
 - In this paper, full-power transmission is considered for simplicity
 - Each device have knowledge of the phase of the channel to the AP, and the AP has full channel state information
 - In analog transmission of a vector, only the values of number of channel uses can be sent (usually much less than the number of network model coefficients)
 - The gradient update should be sparsified and compressed into a smaller dimension
 - The PS recovers the sum of gradient updates by applying AMP (approximate message passing)
 - It is assumed that the gradient updates have similar sparsity pattern among the devices under the i.i.d. data distribution
Appendix: Wireless Cooperative Training

- Uplink Analog transmission (FL)
 - Each device k aims to send Δw_i^k at the i-th global iteration
 - In order to enable dimensionality reduction, a pseudo-random matrix $A_U \in \mathbb{R}^{2TU \times W}$ with i.i.d. entries $\mathcal{N}(0, 1/2T_U)$ is generated and shared
 - Each device k computes and $v_i^k = \text{thresh}_q \left(\Delta w_i^k + \Delta_i^k \right)$ for sparsification
 - To transmit dimension reduced vector $\hat{v}_i^k = A_U v_i^k$, transmit $x_i^k \in \mathbb{C}^{TU \times 1}$,
 \[
 x_i^k (m) = \hat{v}_i^k (2m - 1) + j \hat{v}_i^k (2m), m = 1, \ldots, TU
 \]
 - Each device k transmits $\gamma_i^k e^{-j h_i^k} x_i^k \in \mathbb{C}^{TU \times 1}$, $\gamma_i^k = \sqrt{P_U T_U / \|x_i^k\|_2}$ for full power transmission
 - The PS scales the received signal by
 \[
 \nu_i = \frac{\sum_{k'=1}^{K} \gamma_{i}^{k'} |h_i^{k'}|}{\frac{1}{2} + \sum_{k'=1}^{K} (\gamma_{i}^{k'} |h_i^{k'}|)^2}
 \]
 for minimum mean square error estimate of the sum $A_U \sum_{k=1}^{K} v_i^k$
 - The PS applies AMP algorithm to recover $\sum_{k=1}^{K} v_i^k$
Appendix: Wireless Cooperative Training

- **Uplink Analog transmission (FD)**
 - Each device k aims to send $s_{i,t}^k$ at the i-th global iteration $t = 1, \ldots, L$
 - Apply repetition coding since L^2 is usually lower than $2TU$
 - Each device applies repetition coding with the source integer bandwidth expansion factor $\rho = \lceil 2TU/L^2 \rceil \geq 1$
 - And compute
 \[
 \mathbf{v}_i^k = \mathbf{R}_\rho \mathbf{s}_i^k \in \mathbb{R}^{\rho L^2 \times 1}
 \]
 \[
 \mathbf{R}_\rho = 1_\rho \otimes \mathbf{I}_{L^2}
 \]
 \[
 1_\rho = (1, \ldots, 1)^T
 \]
 \[
 \mathbf{s}_i^k = [(s_{i,1}^k)^T, \ldots, (s_{i,L}^k)^T]^T
 \]
 - And transmit as the same way with case of FL
 - AP multiplies \mathbf{R}_ρ^T / ρ to estimate $\sum_{k=1}^K \mathbf{v}_i^k$
Appendix: Wireless Cooperative Training

- Downlink Analog Transmission (FL, FD/HFD)
 - For the downlink broadcast communication from AP to devices,
 - The AP transmits with full power in a same manner of each device at the uplink
 - Each device applies a scaling factor and the AMP algorithm in order to estimate the vector transmitted by the AP, in a similar manner of AP at the uplink