Enabling On-Device Training of Speech Recognition Models with Federated Dropout

Paper#: 2057

Dhruv Guliani (dguliani@google.com), Lillian Zhou, Changwan Ryu, Tien-Ju Yang, Harry Zhang, Yonghui Xiao, Françoise Beaufays, Giovanni Motta
Summary of Contributions

- Propose using **federated dropout (FD)** to reduce the size of client models while training a full-size model server side.
- Show that FD can be successfully applied to ASR to provides a quality/cost trade-off.
- Extend the technique to Google-scale workloads and show that the trade-off still applies.
- Use per-layer varying FD rates to improve quality while keeping cost constant.
- Show that FD effectively trains high quality **sub-models** within the full-size model, enabling the size to be reduced for on-device inference.
Intro

Federated Learning and Federated Dropout
Federated Learning

Incorporates Privacy into model training through data separation, differential privacy, secure aggregation, etc.

Eliminates need for data collection on central servers

Repeat

FedAvg
Federated Dropout

[12]
Federated Dropout

1. Smaller Models Sampled
2. Smaller Models Sent to Clients
3. Clients Perform Local Updates
Federated Dropout

Reduces both communication and on-device computation cost.

Smaller Models Sampled

Smaller Models Sent to Clients

Clients Perform Local Updates

Client Models Aggregated

[12] Google Research
Federated Dropout Flavours

- Per-Client-Per-Round (PCPR) FD
- Per-Round (PR) FD
 - Simpler infrastructure requirements
Methodology

Model and Data
Models and Datasets

Non Streaming Conformer [2]
- 119M Parameters
- Trained on speaker-split Librispeech from scratch

Streaming Conformer [3]
- 137M Parameters
- Trained on Google scale multi-domain (MD:374k hours) data centrally and then trained using FL on of 26k hours of medium-form (MF) data
- Domain Adaptation task
Models and Datasets

Non Streaming Conformer [2]
- Feedforward layers contain 60% of all model parameters

Streaming Conformer [3]
- Feedforward layers contain 55% of all model parameters
Non-Streaming Conformer Results

Takeaways:

a) FD provides a quality/cost (model size) trade-off

b) Higher FD rates usually converge slower

c) PR is slightly worse than PCPR, but usable if eng. resources limited

d) Higher report goals could improve convergence speed and quality

Detailed analysis in paper
Streaming Conformer Results

Takeaways:
1. FD scales to larger datasets and the domain adaptation task
2. PR remains only slightly worse than PCPR at higher FD rates
Per-Layer Dropout Results

Experimented with varying FD rates per layer (chosen according to estimates of layer importance [22])

Takeaways:
1. Quality/cost trade-off can be improved.
2. New search space.
High-Quality Sub-models

Sampled 50 submodels with the same method as 50% FD from 2 experiments: one trained under FL with 50% FD and one without.

Takeaways:
1. FD improves the quality of sub-models within the larger model
2. Can deploy the same model to devices with various compute capabilities
Conclusions

- Federated dropout is a promising technique to reduce the cost of training ASR models under FL and provides a tangible cost/quality trade-off.
- Federated dropout scales to large, real-world workloads.
- Varying per-layer dropout can yield more performant or lower cost configurations of FD.
- FD causes capable sub-models to form within larger models, opening up possibilities to downsample models for inference.
Select References

[1] Conformer: Convolution-augmented Transformer for Speech Recognition
[12] Expanding the Reach of Federated Learning by Reducing Client Resource Requirements
[22] Are All Layers Created Equal?
Thank You!