Universal Approach for DCT-based Constant-time Gaussian Filter with Moment Preservation Kenjiro SUGIMOTO (Waseda U.) Seisuke KYOCHI (U. of Kitakyushu) Sei-ichiro KAMATA (Waseda U.)

1. Introduction

Gaussian filter (GF)

- An essential image processing tool, e.g., for scale-space
- The larger window size causes longer computational time.

DCT-based constant-time (O(1)) Gaussian filter

- Approximate GF that can run in O(1) time/pixel
- Tradeoff between computational time and accuracy

Ours: comprehensive analysis using a universal model

- Covering all the DCT types and arbitrary moments (see \Im)
- Clear theoretical foundation based on convex optimization

2. Existing Approaches

Which DCT type is the best in approximate O(1) GF? How can we fix moments before-and-after approx?

Method	DCT type	Preserved moments
Elboher and Werman (<i>ICIP 2011</i>) [1]	DCT-1	
Sugimoto and Kamata (<i>ICIP 2013</i>) [2,3]	DCT-5	μ_0
Charalampidis (<i>IEEE TSP 2016</i>) [4]	DCT-3	μ_0, μ_2
Ours (<i>ICASSP 2018</i>)	All	$\mu_0, \mu_2, \mu_4, \dots$

3. Proposed Universal Approach

Unlike existing methods, we comprehensively analyze all the DCT types using a universal model covering them.

General form of all the DCT types

$$n_n \approx \cos\left(-\frac{2\pi}{T}(k+k_0)(n+n_0)\right)$$

This form can simultaneously represent all the DCT type where T, k_0 and n_0 depend on DCT types.

Only DCT-1,3,5,7 ($n_0 = 0$) are appropriate for approximating Gaussian kernel because it is symmetric at n = 0.

How to find out the best approximation **Convex optimization problem**

$$\widehat{h}_{\star} \coloneqq \arg\min_{\widehat{h}} f(\widehat{h})$$
 s.t. $g(\widehat{h}) = 0$

Least-square approximation error

$$(\widehat{h}) \coloneqq \frac{1}{2} (h - C\widehat{h})^{\mathsf{T}} W(h - C\widehat{h}) \in \mathbb{R}$$

Constraint for moment preservation $g(\widehat{h}) \coloneqq P^{\top}WC\widehat{h} - \frac{1}{2}\mu \in \mathbb{R}^{M}$

M indicates number of moments to be preserved.

C is a DCT matrix.

The linearly-constrained least square problem can be solved by the Lagrange multiplier method.

4. Experiments

Noments and accuracy (σ =2, N=7, K=3 & M=2)				
Method	Mean μ_0	Var. μ_2	Kurt. μ_4	RMSE
Convol. ($N = \lceil 6\sigma \rceil$)	1.000	4.000	48.000	0
Convol. ($N = \lceil 3\sigma \rceil$)	1.000	3.808	39.708	7.94 x 10 ⁻⁴
[4] w/ DCT-3 (on paper)	1.000	4.000	47.470	5.73 x 10 ⁻⁴
[4] w/ DCT-3 (our impl.)	1.000	4.000	47.429	5.73 x 10 ⁻⁴
Ours w/ DCT-3	1.000	4.000	47.477	5.73 x 10 ⁻⁴

Ours demonstrably produced almost the same result as the Charalampidis method [4], which only covers DCT-3.

Approximate error (K=3 and M=1,2)

DCT-3,7 showed lower approximate error than DCT-1,5. For smaller σ , DCT-7 evidently outperforms DCT-3.

5. Conclusions

[References]

• We discussed DCT-base O(1) GF via a universal model. • Our model covers all DCT types and arbitrary moments. • It allowed us to comprehensively compare all DCT types. • DCT-7 showed the highest approximate accuracy over all.

1. E. Elboher and M. Werman: **Cosine integral images for fast** spatial and range filtering, Proc. IEEE ICIP, 2011/9. 2. K. Sugimoto and S. Kamata: Fast Gaussian filter with secondorder shift property of DCT-5, Proc. IEEE ICIP, 2013/9. 3. K. Sugimoto and S. Kamata: Efficient constant-time Gaussian filtering with sliding DCT/DST-5 and dual-domain error minimization, ITE Trans. MTA, 2015/1. 4. D. Charalampidis: **Recursive implementation of the Gaussian** filter using truncated cosine functions, IEEE Trans. SP, 2016/7.