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 Many independence-based blind source separation (BSS) methods

reduces to the following minimization problem:

Introduction Primal-dual Splitting Algorithm

➢ Laplace-distribution-based independent component analysis (FDICA)

➢ Spherical-Laplace-distribution-based Independent vector analysis (IVA)

➢ Independent low-rank matrix analysis (ILRMA) [1]

 State-of-the-art algorithms based on the majorization-minimization

(MM) principle [1–3] require specially designed upper bounds whose

derivation might be complicated and time-consuming for some .
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 Primal-dual splitting (PDS) algorithm is one of the proximal splitting

algorithms which can solve the convex optimization problem.

 PDS iteratively utilizes the proximity operator of each function.

 Since the proximity operators are easier subproblems which can be

solved in many ways, the PDS algorithm applied to the independence-

based BSS should be able to handle complicated source model __

more easily than the state-of-the-art MM-based algorithms.

Proposed Primal-dual Algorithm for Independence-based BSS problem

New BSS Models and Experimental Results

 By rewriting matrix determinant with singular values and vectorizing

variables, the BSS problem can be seen as a PDS applicable form.

1m

Source 1

5 cm

45

Source 2

40

1m

Source 1

5 cm

75

Source 2

80

 Four BSS models were investigated as example problems that can be

easily handled by the proposed algorithms.
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 Live recording (liverec) of four female speech contained in UND task

of the SiSEC 2011 database was utilized as an test data.

 In the case of IVA, computational time per iteration of the proposed

algorithm was 1.7x faster than AuxIVA (MM algorithm [2]).

 Modification of the codes was able to be done within a few minutes

(inside train) that indicate easiness of the proposed algorithms. Reverberation time: 130ms,    Window: 128ms Hann (half-overlap)

 Matrix determinant was rewritten by singular values because the

proximity operators of orthogonally invariant functions are known.

This modification allows direct handling of an over-determined case.

 Variables are vectorized so that the role of observed data in terms

of the optimization variable becomes apparent.

 The proximity operator of is to apply the proximity operator of -log

function to each singular value of the un-vectorized variables.

 Source models defined by adding multiple penalty terms can also

be handled by the proposed algorithm with slight modifications. Such

multiple penalty terms can be difficult to handle for MM algorithms.
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