Determined Blind Source Separation via Proximal Splitting Algorithm

Kohei Yatabe (Waseda University) and Daichi Kitamura (NIT, Kagawa College)

Introduction

Many independence-based blind source separation (BSS) methods reduces to the following minimization problem:

$$\underset{\{W[f]\}_{f=1}^{F}}{\text{Minimize}} \quad \mathcal{P}(W[f]\mathbf{x}[t,f]) - \sum_{f=1}^{F} \log |\det(W[f])|$$

> Laplace-distribution-based independent component analysis (FDICA)

$$\mathcal{P}(\mathbf{y}[t,f]) = C \|\mathbf{y}[t,f]\|_{1} = C \sum_{m=1}^{M} \sum_{t=1}^{T} \sum_{f=1}^{F} |y_{m}[t,f]|$$

> Spherical-Laplace-distribution-based Independent vector analysis (IVA)

Primal-dual Splitting Algorithm

$$\begin{bmatrix} \widetilde{\mathbf{w}} = \operatorname{prox}_{\mu_1 g} \left[\mathbf{w}^{[k]} - \mu_1 \mu_2 L^H \mathbf{y}^{[k]} \right] \\ \mathbf{z} = \mathbf{y}^{[k]} + L(2\widetilde{\mathbf{w}} - \mathbf{w}^{[k]}) \\ \widetilde{\mathbf{y}} = \mathbf{z} - \operatorname{prox}_{h/\mu_2} \left[\mathbf{z} \right] \\ (\mathbf{w}^{[k+1]}, \mathbf{y}^{[k+1]}) = \alpha(\widetilde{\mathbf{w}}, \widetilde{\mathbf{y}}) + (1 - \alpha)(\mathbf{w}^{[k]}, \mathbf{y}^{[k]}) \end{bmatrix}$$

Primal-dual splitting (PDS) algorithm is one of the proximal splitting **algorithms** which can solve the convex optimization problem.

Minimize $g(\mathbf{w}) + h(L\mathbf{w})$

 $\mathcal{P}(\mathbf{y}[t,f]) = C \|\mathbf{y}[t,f]\|_{2,1} = C \sum_{m=1}^{M} \sum_{t=1}^{T} \left(\sum_{f=1}^{F} |y_m[t,f]|^2\right)^{\frac{1}{2}}$

Independent low-rank matrix analysis (ILRMA) [1]

$$\mathcal{P}(\mathbf{y}[t,f]) = C \sum_{m=1}^{M} \min_{\varphi_{f,r}^{[m]} \ge 0, \psi_{r,t}^{[m]} \ge 0} \sum_{t=1}^{T} \sum_{f=1}^{F} \left(\frac{|y_m[t,f]|^2}{\sum_{r=1}^{R} \varphi_{f,r}^{[m]} \psi_{r,t}^{[m]}} + \log \sum_{r=1}^{R} \varphi_{f,r}^{[m]} \psi_{r,t}^{[m]} \right)$$

State-of-the-art algorithms based on the majorization-minimization (MM) principle [1–3] require specially designed upper bounds whose derivation might be complicated and time-consuming for some \mathcal{P} .

- PDS iteratively utilizes the proximity operator of each function.

$$\operatorname{prox}_{\mu g}[\mathbf{y}] = \arg\min_{\mathbf{z}} \left[g(\mathbf{z}) + \frac{1}{2\mu} \|\mathbf{y} - \mathbf{z}\|_{2}^{2} \right]$$

Since the **proximity operators are easier subproblems** which can be solved in many ways, the PDS algorithm applied to the independencebased BSS should be **able to handle complicated source model** \mathcal{P} more easily than the state-of-the-art MM-based algorithms.

Proposed Primal-dual Algorithm for Independence-based BSS problem

By rewriting matrix determinant with singular values and vectorizing variables, the BSS problem can be seen as a **PDS applicable form**.

$\operatorname{Minimize} \quad \mathcal{I}(\mathbf{w}) + \mathcal{P}(X\mathbf{w})$

Matrix determinant was rewritten by singular values because the proximity operators of orthogonally invariant functions are known. This modification allows direct handling of an over-determined case.

$$\mathcal{I}(\mathbf{w}) = -\sum_{i=1}^{F} \sum_{j=1}^{M} \log \sigma_m(\mathcal{M}(\mathbf{w})[f]) \qquad \left(\mathcal{M}(\mathbf{w})[f] = W[f]\right)$$

The proximity operator of \mathcal{I} is to apply the proximity operator of -log function to each singular value of the un-vectorized variables.

 $\operatorname{prox}_{-\mu \log}[\sigma_m] = (\sigma_m + \sqrt{\sigma_m^2 + 4\mu})/2$

Source models defined by adding multiple penalty terms can also be handled by the proposed algorithm with slight modifications. Such multiple penalty terms can be difficult to handle for MM algorithms.

Minimize
$$\mathcal{I}(\mathbf{w}) + \sum^{Q} \mathcal{P}_{q}(X\mathbf{w})$$

$f=1 \ m=1$

Variables are vectorized so that the role of observed data X in terms of the optimization variable \mathbf{w} becomes apparent.

New BSS Models and Experimental Results

Four BSS models were investigated as example problems that can be easily handled by the proposed algorithms. ($\lambda = 0.002$)

IVA Minimize
$$\mathcal{I}(\mathbf{w}) + \|X\mathbf{w}\|_{2,1}$$

Ninimize $\mathcal{I}(\mathbf{w}) + \|\mathbf{X}\mathbf{w}\|_{2,1}$

Live recording (liverec) of four female speech contained in UND task of the **SiSEC 2011** database was utilized as an test data.

- In the case of IVA, computational time per iteration of the proposed algorithm was **1.7x faster than AuxIVA** (MM algorithm [2]).
- Modification of the codes was able to be done within a few minutes (inside train) that indicate easiness of the proposed algorithms.

Window: 128ms Hann (half-overlap) Reverberation time: 130ms,

[1] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari, "Determined blind source separation," IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 24, no. 9, pp. 1626–1641, Sep. 2016. [2] N. Ono, "Stable and fast update rules for independent vector analysis based on auxiliary function technique," in Proc. IEEE Workshop Appl. Signal Process. Audio Acoust., Oct. 2011, pp. 189–192. [3] N. Ono and S. Miyabe, "Auxiliary-function-based independent component analysis for super-gaussian sources," in Proc. Int. Conf. Latent Variable Anal. Signal Separation, 2010, pp. 165–172.