

A sparse coding framework for gaze prediction in egocentric video

Yujie Li¹, <u>Atsunori Kanemura^{1,2}</u>, Hideki Asoh¹, Taiki Miyanishi², Motoaki Kawanabe²

¹National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

² Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan

Egocentric (aka first-person) videos

• Egocentric videos aka first-person videos (FPVs)

Captured by a head-mount camera

Different from the usual third-person videos (TPVs)

Unstable due to head motion

FPVs

- Background shifts
- Blurs due to head motion
- Only parts of objects

TPV

- Stable background
- With less noise

Gaze detection

- Human gaze
 - Scan the scene by leaping between salient regions
- Saliency detection
 - Has dealt with TPVs
 - Existing methods

- Harel et al. (*NIPS* 2007): Graph-based visual saliency (GBVS).
- Li et al. (CVPR 2015): Weighted sparse coding framework based on l_1 norm (WSCF).
- We propose a gaze prediction, saliency detection algorithm that works well on FPVs

Simplified procedure

- 1. Divide an image into superpixels
- 2. Extract a feature vector for each superpixel
 - Combine intensity averages vector $m{f}_{
 m a}$ and color histogram vector $m{f}_{
 m h}$
- 3. Sparsely reconstruct the feature vector by a saliency dictionary, and evaluate the reconstruction error
 - Saliency dictionary collects features for salient superpixels; it is iteratively updated
- 4. Identify superpixels whose reconstruction error is smaller than a threshold as salient regions

- Combine two features by canonical correlation analysis (CCA)
 - Use coupled RGB and Lab color spaces as color descriptors.
 - Generate two feature vectors for all superpixels: An averaged feature vector and a color histogram feature vector.
 - Perform CCA to extract common features

9

- Gaze prediction based on sparse coding (GPSC)
 - Monitor the reconstruction errors of sparse coding with a salier
 - Sparse reconstruction error for superpixel r

$$\epsilon_r^{\star} = \|\mathbf{f}_r - \mathbf{D}\mathbf{h}_r^{\star}\|_2^2,$$

$$\mathbf{h}_r^{\star} = \underset{\mathbf{h}}{\operatorname{argmin}} \|\mathbf{f}_r - \mathbf{D}\mathbf{h}\|_2^2 \quad \text{s.t.} \ \|\mathbf{h}\|_0 \le l$$

• The saliency value for superpixel r

$$Sal^{*}(\epsilon_{r}^{\star}) = \exp(-\epsilon_{r}^{\star})$$
$$Sal(r) = Sal^{+}(r) \cdot Sal^{*}(\epsilon_{r}^{\star})$$

• $Sal^+(r)$ is a center-bias prior

- Initial dictionary
 - Collect superpixels that are distinct from neighboring superpixels (kind of clustering)
- Dictionary updates
 - After calculating saliency values, collect superpixels whose saliencies are larger than a threshold

Experiments

- <u>Dataset</u>: GTEA Gaze (Fathi et al. *ECCV* 2012)
 - Easy cooking activity captured with Tobii eye-tracking glasses
 - True gaze information is available
 - Consisting of 30 actions

Reaching to milk

Taking bread

Putting jam

- Evaluation:
 - Receiver operating characteristic (ROC) curve
 - Area under curve (AUC)

AR

Sparsity control

- Degree of sparsity
- Balances the tradeoff
- Less sparse
 - Too few dictionary atoms
 - Not much variety
- More sparse

• We use l = 50

- Too many atoms
- Non-salient regions can be reconstructed well

9

714

AR ROC curves for different actions

AUC scores for different actions

No.	Session name	ITTI	GBVS	WSCF	GPSC
1	take bread	0.733	0.722	0.662	0.737
2	take PlateBowl	0.747	0.789	0.644	0.682
3	take knife	0.773	0.791	0.737	0.845
4	take bread	0.503	0.568	0.701	0.701
5	take peanut	0.842	0.810	0.772	0.859
6	open peanut	0.630	0.678	0.830	0.781
7	scoop peanut	0.554	0.590	0.652	0.662
8	spread peanut	0.579	0.702	0.590	0.612
9	scoop peanut	0.714	0.769	0.683	0.795
10	spread peanut	0.568	0.632	0.568	0.552
11	close peanut	0.520	0.501	0.640	0.631
12	put peanut	0.621	0.729	0.686	0.715
13	take jam	0.775	0.718	0.684	0.792
14	open jam	0.866	0.855	0.771	0.894
15	spread peanut	0.661	0.752	0.594	0.778

		i.	

6	scoop jam	0.891	0.906	0.765	0.898
7	scoop jam	0.882	0.893	0.766	0.906
8	close jam	0.870	0.896	0.765	0.884
9	put jam	0.735	0.666	0.550	0.560
0	spread jam	0.857	0.869	0.758	0.872
1	sandwich bread	0.622	0.546	0.551	0.661
2	take PlateBowl	0.808	0.833	0.745	0.773
3	take cereal	0.736	0.726	0.744	0.865
4	pour cereal	0.790	0.867	0.800	0.871
5	put cereal	0.671	0.698	0.714	0.674
6	take milk	0.593	0.617	0.513	0.593
7	open milk	0.855	0.864	0.805	0.833
8	pour milk	0.852	0.879	0.744	0.873
9	close milk	0.725	0.761	0.690	0.715
0	put milk	0.727	0.746	0.681	0.749
	mean	0.723	0.746	0.693	0.759

AIST ROC curves for different people

12

AR

AUC scores for different people

No.	002	003	005	006	007	008	010	012
ITTI	0.606	0.418	0.099	0.466	0.664	0.425	0.276	0.426
GBVS	0.598	0.428	0.086	0.549	0.697	0.399	0.276	0.444
WSCF	0.571	0.397	0.085	0.420	0.630	0.325	0.253	0.439
GPSC	0.641	0.432	0.113	0.503	0.714	0.444	0.297	0.458

`	013	014	016	017	018	020	021	022	Ave.
/	0.250	0.690	0.592	0.555	0.581	0.350	0.680	0.513	0.474
	0.251	0.717	0.614	0.583	0.604	0.371	0.715	0.545	0.492
i	0.233	0.691	0.569	0.572	0.579	0.297	0.603	0.439	0.444
	0.271	0.719	0.644	0.596	0.603	0.379	0.695	0.538	0.503

AR

Conclusion

- Gaze prediction on FPVs
- GPSC: CCA-projected features, l_0 norm
- Achieved good performance overall, but not always

• A good ground to build more, e.g. multi-sensor integration