A generative auditory model embedded neural network for speech processing
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INTRODUCTION PROPOSED NEURAL NETWORK

The generative auditory model consists of two stages, the stage
of spectrum estimation in the logarithmic-frequency axis by the
cochlea and the stage of spectral-temporal analysis in the
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1. The first stage: Cochlear filtering
In short, the output of this stage is referred to as the auditory
spectrogram, which represents neuron activities along the time
and the logF axes. Intuitively, the auditory spectrogram is similar
to the magnitude response of the STFT spectrogram presented
along the logF axis. The extracted local envelope approximates
the magnitude of the STFT spectrogram.

Fig. 2. Architecture of the proposed NN for speech processing on discriminative tasks.
Fig. 3. Magnitude responses of 36 gammatone filters.

* The generative 2-stage auditory model consists of two major operations to decompose speech waveforms:
the 1-D cochlear filtering and the 2-D spectro-temporal modulation filtering. Each filtering can be
implemented by convolution. Therefore, we construct the NN based on the convolutional neural network
(CNN) for discriminative tasks. Fig. 2 shows the proposed NN which includes an input layer, a 1-D convolution
layer, a merge layer, a 2-D convolution layer, a pooling layer, and four fully-connected layers. The input to the

» 2. The second stage: Cortical filtering NN is the time-domain waveform without any pre-processing.

The second stage models the spectro-temporal selectivity of Al
neurons. Briefly speaking, the auditory spectrogram is further
analyzed/ decomposed by A1l neurons which are modeled as

EXPERIMENT RESULTS

Table 2. Speaker 1dentification rates for all test conditions
Scenario SNR 4000
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Fig. 5. Magnitude responses of 1-D kernels of BothRand
method after training. The left panel shows the original re-
sponses and the right panel shows rearranged responses.

Fig. 1. Spectro-temporal impulse responses of sample modu Fig. 4. Magnitude responses of 1-D kernels of Gam-
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